Advertisement

Segment-Based Classes for Language Modeling Within the Field of CSR

  • Raquel Justo
  • M. Inés Torres
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4756)

Abstract

In this work, we propose and formulate two different approaches for the language model integrated in a Continuous Speech Recognition System. Both of them make use of class-based language models where classes are made up of segments or sequences of words. On the other hand, an interpolated model of a class-based language model and a word-based language model is explored as well. The experiments carried out over a spontaneous dialogue corpus in Spanish, demonstrate that introducing segments of words in a class-based language model a better performance of a Continuous Speech Recognition system can be achieved.

Keywords

language model classes segments of words 

References

  1. 1.
    Jelinek, F.: Statistical Methods for Speech Recognition. MIT Press, Cambridge (1998)Google Scholar
  2. 2.
    Gupta, V., Lenning, M., Mermelstein, P.: A language model for very large-vocabulary speech recognition. Computer Speech and Language 6(2), 331–344 (1992)CrossRefGoogle Scholar
  3. 3.
    Benedí, J.M., Sánchez, J.A.: Estimation of stochastic context-free grammars and their use as language models. Computer Speech and Language 19(3), 249–274 (2005)CrossRefGoogle Scholar
  4. 4.
    García, P., Vidal, E.: Inference of k-testable languages in the strict sense and application to syntactic pattern recognition. IEEE Trans. Pattern Anal. Mach. Intell. 12(9), 920–925 (1990)CrossRefGoogle Scholar
  5. 5.
    Torres, I., Varona, A.: k-tss language models in speech recognition systems. Computer Speech and Language 15(2), 127–149 (2001)CrossRefGoogle Scholar
  6. 6.
    Brown, P.F., Pietra, V.J.D., Souza, P.V.d., Lai, J.C., Mercer, R.L.: Class–based n-gram Models of Natural Language. Computational Linguistics 18(4), 467–480 (1992)Google Scholar
  7. 7.
    Niesler, T.R., Woodland, P.C.: A variable-length category-based n-gram language model. In: IEEE ICASSP 1996, Atlanta, GA, vol. I, pp. 164–167. IEEE, Los Alamitos (1996)Google Scholar
  8. 8.
    Niesler, T., Whittaker, E., Woodland, P.: Comparison of part-of-speech and automatically derived category-based language models for speech recognition. In: ICASSP 1998, Seattle, pp. 177–180 (1998)Google Scholar
  9. 9.
    Zitouni, I.: Backoff hierarchical class n-gram language models: effectiveness to model unseen events in speech recognition. Computer Speech and Language 21(1), 99–104 (2007)CrossRefGoogle Scholar
  10. 10.
    Deligne, S., Bimbot, F.: Language modeling by variable length sequences: Theoretical formulation and evaluation of multigrams. In: Proc. ICASSP 1995, Detroit, MI, pp. 169–172 (1995)Google Scholar
  11. 11.
    Ries, K., Buo, F.D., Waibel, A.: Class phrase models for language modelling. In: Proc. ICSLP 1996, Philadelphia, PA, vol. 1, pp. 398–401 (1996)Google Scholar
  12. 12.
    Kuo, H.K.J., Reichl, W.: Phrase-based language models for speech recognition. In: Proceedings of EUROSPEECH 99, Budapest, Hungary, vol. 4, pp. 1595–1598 (September 1999)Google Scholar
  13. 13.
    Marcu, D., Wong, W.: A phrase-based, joint probability model for statistical machine translation (EMNLP), Philadelphia, PA (July 6-7, 2002)Google Scholar
  14. 14.
    Zens, R., Ney, H.: Improvements in phrase-based statistical machine translation. In: Proc. of the Human Language Technology Conf (HLT-NAACL), pp. 257–264 (2004)Google Scholar
  15. 15.
    Caseiro, D., Trancoso, I.: Transducer composition for on-the-fly lexicon and language model integration. In: Proceedings ASRU 2001 - IEEE Automatic Speech Recognition and Understanding Workshop, Madonna di Campiglio, Italy (December 2001)Google Scholar
  16. 16.
    Och, F.J.: An efficient method for determining bilingual word classes. In: Proceedings of the ninth conference on European chapter of the Association for Computational Linguistics, Morristown, NJ, USA, Association for Computational Linguistics, pp. 71–76 (1999)Google Scholar
  17. 17.
    Benedí, J., Lleida, E., Varona, A., Castro, M., Galiano, I., Justo, R., López, I., Miguel, A.: Design and acquisition of a telephone spontaneous speech dialogue corpus in Spanish: DIHANA. In: Proc. of LREC 2006, Genoa, Italy (May 2006)Google Scholar
  18. 18.
    Justo, R., Torres, M.I., Benedí, J.M.: Category-based language model in a spanish spoken dialogue system. Procesamiento del Lenguaje Natural 37(1), 19–24 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Raquel Justo
    • 1
  • M. Inés Torres
    • 1
  1. 1.Dept. of Electricity and Electronics, University of the Basque CountrySpain

Personalised recommendations