Surface–Normal Estimation with Neighborhood Reorganization for 3D Reconstruction

  • Felix Calderon
  • Ubaldo Ruiz
  • Mariano Rivera
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4756)

Abstract

Fastest three-dimensional (3D) surface reconstruction algorithms, from point clouds, require of the knowledge of the surface–normals. The accuracy, of state of the art methods, depends on the precision of estimated surface–normals. Surface–normals are estimated by assuming that the surface can be locally modelled by a plane as was proposed by Hoppe et. al [1]. Thus, current methods for estimating surface–normals are prone to introduce artifacts at the geometric edges or corners of the objects. In this paper an algorithm for Normal Estimation with Neighborhood Reorganization (NENR) is presented. Our proposal changes the characteristics of the neighborhood in places with corners or edges by assuming a locally plane piecewise surface. The results obtained by NENR improve the quality of the normal with respect to the state of the art algorithms. The new neighborhood computed by NENR, use only those points that belong to the same plane and they are the nearest neighbors. Experiments in synthetic and real data shown an improvement on the geometric edges of 3D reconstructed surfaces when our algorithm is used.

Keywords

Normal Estimation Point Cloud Surface Reconstruction 

References

  1. 1.
    Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. In: SIGGRAPH 1992: Proceedings of the 19th annual conference on Computer graphics and interactive techniques, pp. 71–78. ACM Press, New York (1992)CrossRefGoogle Scholar
  2. 2.
    Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., Seidel, H.P.: Multi-level partition of unity implicits. In: SIGGRAPH 2003: ACM SIGGRAPH 2003 Papers, pp. 463–470. ACM Press, New York (2003)CrossRefGoogle Scholar
  3. 3.
    Bajaj, C.L., Bernardini, F., Xu, G.: Automatic reconstruction of surfaces and scalar fields from 3d scans. In: SIGGRAPH 1995: Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, pp. 109–118. ACM Press, New York (1995)CrossRefGoogle Scholar
  4. 4.
    Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Evans, T.R.: Reconstruction and representation of 3d objects with radial basis functions. In: SIGGRAPH 2001: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pp. 67–76. ACM Press, New York (2001)CrossRefGoogle Scholar
  5. 5.
    Pauly, M., Keiser, R., Kobbelt, L.P., Gross, M.: Shape modeling with point-sampled geometry. In: SIGGRAPH 2003: ACM SIGGRAPH 2003 Papers, pp. 641–650. ACM Press, New York (2003)CrossRefGoogle Scholar
  6. 6.
    Rivera, M., Marroquin, J.L.: The adaptive rest-condition spring system: An edge-preserving regularization techique. In: ICIP-2000, vol. II, pp. 805–807. IEEE Signal Processing Society, Vancouver, BC, Canada (2000)Google Scholar
  7. 7.
    O’Rourke, J.: Computational geometry in C. Cambridge University Press, New York (2000)Google Scholar
  8. 8.
    Amenta, N., Bern, M., Kamvysselis, M.: A new voronoi-based surface reconstruction algorithm. In: SIGGRAPH 1998: Proceedings of the 25th annual conference on Computer graphics and interactive techniques, pp. 415–421. ACM Press, New York (1998)CrossRefGoogle Scholar
  9. 9.
    Amenta, N., Choi, S., Kolluri, R.K.: The power crust. In: SMA 2001: Proceedings of the sixth ACM symposium on Solid modeling and applications, pp. 249–266. ACM Press, New York (2001)CrossRefGoogle Scholar
  10. 10.
    Dey, T.K., Goswami, S.: Tight cocone: a water-tight surface reconstructor. In: SM 2003: Proceedings of the eighth ACM symposium on Solid modeling and applications, pp. 127–134. ACM Press, New York (2003)CrossRefGoogle Scholar
  11. 11.
    Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface construction algorithm. In: SIGGRAPH 1987: Proceedings of the 14th annual conference on Computer graphics and interactive techniques, pp. 163–169. ACM Press, New York (1987)CrossRefGoogle Scholar
  12. 12.
    Bloomenthal, J.: An implicit surface polygonizer, 324–349 (1994)Google Scholar
  13. 13.
    Hart, J.C.: Sphere tracing: A geometric method for the antialiased ray tracing of implicit surfaces. The Visual Computer 12, 527–545 (1996)CrossRefGoogle Scholar
  14. 14.
    Black, M., Rangarajan, A.: On the unification of line processes, outlier rejection, and robust statistics with applications in early vision. Int’l J. Computer Vision 19, 57–92 (1996)CrossRefGoogle Scholar
  15. 15.
    Charbonnier, P., Blanc-Feraud, L., Aubert, G., Barluad, M.: Deterministic edge-preserving regularization in computed imaging. IEEE Trans. Image Processing 6, 298–311 (1997)CrossRefGoogle Scholar
  16. 16.
    Rivera, M., Marroquin, J.L.: Adaptive rest condition potentials: first and second order edge-preserving regularization. Journal of Computer Vision and Image Understanding 88, 76–93 (2002)MATHCrossRefGoogle Scholar
  17. 17.
    Rivera, M., Marroquin, J.: Half–quadratic cost functions with granularity control. Image and Vision Computing 21, 345–357 (2003)CrossRefGoogle Scholar
  18. 18.
    Calderon, F., Romero, L.: Non-parametric image registration as a way to obtain an accurate camera calibration. In: Monroy, R., Arroyo-Figueroa, G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS (LNAI), vol. 2972, pp. 584–591. Springer, Heidelberg (2004)Google Scholar
  19. 19.
    Calderon, F., Romero, L., Flores, J.: Ga-ssd-arc-nlm for parametric image registration. In: Martínez-Trinidad, J.F., Carrasco Ochoa, J.A., Kittler, J. (eds.) CIARP 2006. LNCS, vol. 4225, pp. 227–236. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Ohtake, Y.: Mpui implementation in (2003), http://www.mpi-inf.mpg.de/~ohtake/mpu_implicits/

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Felix Calderon
    • 1
  • Ubaldo Ruiz
    • 1
  • Mariano Rivera
    • 2
  1. 1.Universidad Michoacana de San Nicolás de Hidalgo, División de Estudios de Posgrado. Facultad de Ingeniería Eléctrica Santiago Tapia 403 Centro. Morelia, Michoacán, CP 58000México
  2. 2.Centro de Investigacion en Matematicas A.C. Apdo. Postal 402, Guanajuato, Gto. CP 36000Mexico

Personalised recommendations