An Evaluation of Video Cut Detection Techniques

  • Sandberg Marcel Santos
  • Díbio Leandro Borges
  • Herman Martins Gomes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4756)

Abstract

Accurate detection of shot transitions plays an important role on automatic analysis of digital video contents, and it is a key issue for video indexing and summarization, amongst other tasks. This work presents in more detail a novel strategy, based on the concept of visual rhythm, to automatically detect sharp transitions or cuts in arbitrary videos. The central part of the work is a comparative evaluation of this strategy versus three other very competitive approaches for video cut detection: one based on the visual rhythm concept, other based on pixel differentiation and a last one based on color histograms. The evaluation carried out demonstrated that the proposed method achieves, on average, higher recall rates at a cost of a slightly lower precision.

Keywords

video cut detection visual rhythm pixel differentiation color histograms video summarization 

References

  1. 1.
    Bordwell, D., Thompson, K.: Film art: an introduction. Random House, New York (1986)Google Scholar
  2. 2.
    Chung, M.G., Lee, J., Kim, H., Song, S.M.-H., Kim, W.M.: Automatic video segmentation based on spatio-temporal features. Korea Telecom Journal 4(1), 4–14 (1999)Google Scholar
  3. 3.
    Gargi, U., Kasturi, R., Strayer, S.H.: Performance characterization of video-shot-change detection methods. IEEE Trans. on Circuits and Systems for Video Tech. 10, 1–13 (2000)CrossRefGoogle Scholar
  4. 4.
    Guimarães, S.J.F., Couprie, M.: Video segmentation based on 2d image analysis. Pattern Recognition Letters 24(7), 947–957 (2003)CrossRefGoogle Scholar
  5. 5.
    Hanjalic, A.: Shot boundary detection: unraveled and resolved? IEEE Trans. on Circuits and Systems for VideoTechnology 12(2), 90–105 (2002)CrossRefGoogle Scholar
  6. 6.
    Jun, S.-C., Park, S.-H.: An automatic cut detection algorithm using median filter and neural network. Computers and Communications 2, 1049–1052 (2000)Google Scholar
  7. 7.
    Leszczuk, M., Papir, Z.: Accuracy vs. speed trade-off in detecting of shots in video content for abstracting digital video libraries. In: Boavida, F., Monteiro, E., Orvalho, J. (eds.) IDMS 2002 and PROMS 2002. LNCS, vol. 2515, pp. 176–189. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Lienhart, R.: Reliable transition detection in videos: a survey and practitioner’s guide. Int. Journal of Image and Graphics 1(3), 469–486 (2001)CrossRefGoogle Scholar
  9. 9.
    Lienhart, R.: Comparison of automatic shot boundary detection algorithms. In: Proc. SPIE Image and Video Processing, pp. 290–301 (1999)Google Scholar
  10. 10.
    Lu, S., King, I., Lyu, M.R.: A novel video summarization framework for document preparation and archival applications, In: IEEE Aerospace Conf. CDROM: IEEEAC paper #1415, pp. 1–10 (2005)Google Scholar
  11. 11.
    Ngo, C.-W., Pong, T.-C., Chin, R.T.: Video partitioning by temporal slice coherency. IEEE Trans. on Circuits and Systems for Video Technology 11(8), 941–953 (2001)CrossRefGoogle Scholar
  12. 12.
    Open Video Project, http://www.open-video.org
  13. 13.
    Santos, S.M., Gomes, H.M., Borges, D.L.: A Novel cut detection strategy based on visual rhythm. In: IASTED Int. Conf. on Computational Intelligence, pp. 303—308 (2006)Google Scholar
  14. 14.
    TRECVID – TREC Video Retrieval Evaluation, http://www-nlpir.nist.gov/projects/trecvid/
  15. 15.
    Truong, B.T., Dorai, C., Venkatesh, S.: New enhancements to cut, fade, and dissolve detection processes in video segmentation. In: ACM Int. Conf. on Multimedia, pp. 219–227 (2000)Google Scholar
  16. 16.
    Wildes, R.P.: A measure of motion salience for surveillance applications. In: IEEE Int. Conf. on Image Processing, pp. 183–187 (1998)Google Scholar
  17. 17.
    Yeo, B.-L., Liu, B.: Rapid scene analysis on compressed video. IEEE Trans. on Circuit and Systems for Video Technology 5(6), 533–544 (1995)CrossRefGoogle Scholar
  18. 18.
    Yusoff, Y., Christmas, W., Kittler, J.: Video shot cut detection using adaptive thresholding. In: British Machine Video Conf. pp. 362–371 (2000)Google Scholar
  19. 19.
    Zhang, D., Qi, W., Zhang, H.-J.: A new shot boundary detection algorithm. In: IEEE Pacific Rim Conf. on Multimedia, pp. 63–70 (2001)Google Scholar
  20. 20.
    Zheng, W., Yuan, J., Wang, H., Lin, F., Zhang, B.: A novel shot boundary detection framework. In: SPIE Visual Communications and Image Processing, pp. 410–420 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Sandberg Marcel Santos
    • 1
  • Díbio Leandro Borges
    • 2
  • Herman Martins Gomes
    • 1
  1. 1.Departamento de Sistemas e Computação, Universidade Federal de Campina Grande, Av. Aprígio Veloso s/n, 58109-970 Campina Grande PBBrazil
  2. 2.Departamento de Ciência da Computação, Fundação Universidade de Brasília, Campus Universitário Darcy Ribeiro, 70910-900 Brasília DFBrazil

Personalised recommendations