Robust Color Contour Object Detection Invariant to Shadows

  • Jorge Scandaliaris
  • Michael Villamizar
  • Juan Andrade-Cetto
  • Alberto Sanfeliu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4756)


In this work a new robust color and contour based object detection method in images with varying shadows is presented. The method relies on a physics-based contour detector that emphasizes material changes and a contour-based boosted classifier. The method has been tested in a sequence of outdoor color images presenting varying shadows using two classifiers, one that learnt contour object features from a simple gradient detector, and another that learnt from the photometric invariant contour detector. It is shown that the detection performance of the classifier trained with the photometric invariant detector is significantly higher than that of the classifier trained with gradient detector.


color invariance shadow removal object detection boosting 


  1. 1.
    Nadimi, S., Bhanu, B.: Physical models for moving shadow and object detection in video. IEEE Trans. Pattern Anal. Machine Intell. 26(8), 1079–1087 (2004)CrossRefGoogle Scholar
  2. 2.
    Salvador, E., Cavallaro, A., Ebrahimi, T.: Cast shadow segmentation using invariant color features. Comput. Vis. Image Und. 95(2), 238–259 (2004)CrossRefGoogle Scholar
  3. 3.
    Gevers, T., Stokman, H.: Classifying color edges in video into shadow-geometry, highlight, or material transitions. IEEE Trans. Multimedia 5(2), 237–243 (2003)CrossRefGoogle Scholar
  4. 4.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proc. 15th IEEE Conf. Comput. Vision Pattern Recog. Kauai, pp. 511–518. IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  5. 5.
    Shotton, J., Blake, A.R.C.: Multiclass object recognition with sparse, localized features. In: Proc. IEEE Int. Conf. Comput. Vision, pp. 503–510 (October 2005)Google Scholar
  6. 6.
    Villamizar, M., Sanfeliu, A., Andrade-Cetto, J.: Computation of rotation local invariant features using the integral image for real time object detection. In: Proc. 18th IAPR Int. Conf. Pattern Recog. Hong Kong, vol. 4, pp. 81–85. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  7. 7.
    Shafer, S.A.: Using color to separate reflection components. Color Res. Appl. 10(4), 210–218 (1985)CrossRefGoogle Scholar
  8. 8.
    Gevers, T., Smeulders, W.M.: Color based object recognition. Pattern Recogn. 32, 453–464 (1999)CrossRefGoogle Scholar
  9. 9.
    Taylor, J.R.: An introduction to error analysis. 2nd edn. University Science Books, Sausalito, CA (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Jorge Scandaliaris
    • 1
  • Michael Villamizar
    • 1
  • Juan Andrade-Cetto
    • 1
  • Alberto Sanfeliu
    • 1
    • 2
  1. 1.Institut de Robòtica i Informàtica Industrial (UPC-CSIC) 
  2. 2.Dept. System Engineering and Automation, Universitat Politècnica de Catalunya (UPC) BarcelonaSpain

Personalised recommendations