Deterministic Component of 2-D Wold Decomposition for Geometry and Texture Descriptors Discovery

  • Erika Danaé López-Espinoza
  • Leopoldo Altamirano-Robles
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4756)


In this paper, the deterministic component of 2-D Wold decomposition is used to obtain texture descriptors in industrial plastic quality images, and hidden geometry of tree crown in remote sensing images. The texture image is decomposed into two texture images: a non-deterministic texture and a deterministic one. In order to obtain texture descriptors, a set of discriminant texture features is selected from the deterministic component. The texture descriptors have been used to distinguish among three kinds of plastic quality. The obtained texture descriptors are compared against texture descriptors obtained from the original image. With the objective to find hidden geometry of tree crown in remote sensing images, the deterministic component of the original image is analyzed. The observed geometry is compared against the modeled geometry in the literature of marked point processes.


2-D Wold Decomposition Homogeneous Random Fields Texture Geometry 


  1. 1.
    Brodatz, P.: Textures: A Photographic Album for Artists and Designers. Dover Publications, New York (1966)Google Scholar
  2. 2.
    Cross, G., Jain, A.: Markov Random Field Texture Models. IEEE Transactions on Pattern Analysis and Machine Intellige 5, 25–39 (1983)CrossRefGoogle Scholar
  3. 3.
    Francos, J.M., Meiri, A.Z., Porat, B.: A Unified Texture Model Based on a 2-D Wold-Like Decomposition. IEEE Transactions on Signal Processing 41, 2665–2678 (1993)zbMATHCrossRefGoogle Scholar
  4. 4.
    Li, F., Peng, J., Zheng, X.: Object-Based and Semantic Image Segmentation Using MRF. EURASIP Journal on Applied Signal Processing 6, 840–883 (2004)Google Scholar
  5. 5.
    Liu, F., Picard, R.W.: A Spectral 2-D Wold Decomposition Algorithm for Homogeneous Random Fields. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 4, pp. 3501–3504. IEEE Signal Processing Society, Piscataway New Jersey (1999)Google Scholar
  6. 6.
    Liu, F., Picard, R.W.: Periodicity, Directionality, and Randomness: Wold Features for Perceptual Pattern Recognition. Computer Vision & Image. In: Proceedings of the 12th IAPR International Conference on Pattern Recognition, vol. 2, pp. 184–189. IEEE Computer Society, Los Alamitos California (1994)Google Scholar
  7. 7.
    Perrin, G., Descombes, X., Zerubia, J.: 2D and 3D Vegetation Resource Parameters Assesment using Marked Point Processes. In: ICPR 2006, vol. 1, pp. 1–4. IEEE Computer Society, Washington DC USA (2006)Google Scholar
  8. 8.
    Sriram, R., Francos, J.M., Pearlman, W.A.: Texture Coding Using a Wold Decomposition Model. In: Proceedings of the 12th IAPR International Conference on Pattern Recognition. IEEE Transactions on Image Processing, vol. 3, pp. 35–39. IEEE Signal Processing Society, Piscataway New Jersey (1996)Google Scholar
  9. 9.
    Ramananjarasoa, C., Alata, O., Najim, M.: 2-D Wold Decomposition: New Parameter Estimation Approach to Evanescent Field Spectral Supports. In: EUSIPCO, vol. 2, pp. 913–916 (2000)Google Scholar
  10. 10.
    Huang, Y., Chan, K.L.: Texture Decomposition by Harmonics Extraction From Higher Order Statistics. IEEE Transactions on Image Processing 13, 1–14 (2004)CrossRefGoogle Scholar
  11. 11.
    Stitou, Y., Turcu, F., Najim, M., Redouane, L.: 3-D Texture Characterization Based on Wold Decomposition and Higher Order Statistics. In: ICASSP, vol. 2, pp. 165–168. IEEE Signal Processing Society, Piscataway New Jersey (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Erika Danaé López-Espinoza
    • 1
  • Leopoldo Altamirano-Robles
    • 1
  1. 1.National Institute of Astrophysics, Optics and Electronics, Computer Science Department, Luis Enrique Erro 1, 72840 TonantzintlaMéxico

Personalised recommendations