Advertisement

Efficient Rotation-Discriminative Template Matching

  • David Marimon
  • Touradj Ebrahimi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4756)

Abstract

This paper presents an efficient approach to rotation discriminative template matching. A hierarchical search divided in three steps is proposed. First, gradient magnitude is compared to rapidly localise points with high probability of match. This result is refined, in a second step, using orientation gradient histograms. A novel rotation discriminative descriptor is applied to estimate the orientation of the template in the tested image. Finally, template matching is efficiently applied with the estimated orientation and only at points with high gradient magnitude and orientation histogram similarity. Experiments show a higher performance and efficiency as compared to similar techniques.

Keywords

template matching rotation gradient histogram 

References

  1. 1.
    Lewis, J.: Fast template matching. Vision Interface, 120–123 (1995)Google Scholar
  2. 2.
    Hager, G., Belhumeur, P.: Real-time tracking of image regions with changes in geometry and illumination. In: Computer Vision and Pattern Recognition (CVPR), pp. 403–410 (1996)Google Scholar
  3. 3.
    Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence 25(5), 564–577 (2003)CrossRefGoogle Scholar
  4. 4.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Computer Vision and Pattern Recognition (CVPR). vol. 1, pp. 511–518 (2001)Google Scholar
  5. 5.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. on Pattern Analysis and Machine Intelligence 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  6. 6.
    Fredriksson, K., Ukkonen, E.: Faster template matching without FFT. In: Intl. Conf. on Image Processing (ICIP). vol.  1, pp. 678–681 (2001)Google Scholar
  7. 7.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. Intl. Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  8. 8.
    Haralick, R., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. on Systems, Man and Cybernetics 3(6), 610–621 (1973)CrossRefGoogle Scholar
  9. 9.
    Ullah, F., Kaneko, S.: Using orientation codes for rotation-invariant template matching. Pattern Recognition 37(2), 201–209 (2004)zbMATHCrossRefGoogle Scholar
  10. 10.
    Porikli, F.: Integral histogram: a fast way to extract histograms in cartesian space. In: Computer Vision and Pattern Recognition (CVPR). vol. 1, pp. 829–836 (2005)Google Scholar
  11. 11.
    Visual Geometry Group, Robotics Research Group, Department of Engineering Science, University of Oxford, http://www.robots.ox.ac.uk/~vgg/data.html
  12. 12.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conf. pp. 147–151 (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • David Marimon
    • 1
  • Touradj Ebrahimi
    • 1
  1. 1.Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 LausanneSwitzerland

Personalised recommendations