Advertisement

Morphological Distinguished Regions

  • Allan Hanbury
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4756)

Abstract

Distinguished regions can be detected with high repeatability in different images of the same scene. Two definitions of distinguished regions of an image in a mathematical morphology framework are proposed: one based on the use of reconstruction operators on a series of cross sections of a greyscale image, and the second based on extracting regions present in a large number of levels of a watershed segmentation hierarchy. The proposed distinguished regions are evaluated by measuring their repeatability in transformed images of the same scene.

Keywords

distinguished region hierarchical segmentation repeatability watershed 

References

  1. 1.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image and Vision Computing 22, 761–767 (2004)CrossRefGoogle Scholar
  2. 2.
    Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision (at ECCV) (2004)Google Scholar
  3. 3.
    Dorko, G., Schmid, C.: Selection of scale invariant neighborhoods for object class recognition. In: Proc. of the Int. Conf. on Computer Vision, pp. 634–640 (2003)Google Scholar
  4. 4.
    Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Van Gool, L.: A comparison of affine region detectors. International Journal of Computer Vision 65(1/2), 43–72 (2005)CrossRefGoogle Scholar
  5. 5.
    Meyer, F.: An overview of morphological segmentation. International Journal of Pattern Recognition and Articial Intelligence 15(7), 1089–1118 (2001)CrossRefGoogle Scholar
  6. 6.
    Hanbury, A., Marcotegui, B.: Waterfall segmentation of complex scenes. In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3851, pp. 888–897. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Zanoguera, F., Marcotegui, B., Meyer, F.: A toolbox for interactive segmentation based on nested partitions. In: Proc. of the Int. Conf. on Image Processing (1999)Google Scholar
  8. 8.
    Tuytelaars, T., Van Gool, L.: Matching widely separated views based on affine invariant regions. International Journal on Computer Vision 59(1), 61–85 (2004)CrossRefGoogle Scholar
  9. 9.
    Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Analysis and Machine Intelligence 13(6), 583–598 (1991)CrossRefGoogle Scholar
  10. 10.
    Soille, P.: Morphological Image Analysis, 2nd edn. Springer, Heidelberg (2002)Google Scholar
  11. 11.
    Vachier, C., Meyer, F.: Extinction values: A new measurement of persistence. In: Proc. of the IEEE Workshop on Non Linear Signal/Image Processing, pp. 254–257 (1995)Google Scholar
  12. 12.
    Fitzgibbon, A.W., Pilu, M., Fisher, R.B.: Direct least-squares fitting of ellipses. IEEE Trans. Pattern Analysis and Machine Intelligence 21(5), 476–480 (1999)CrossRefGoogle Scholar
  13. 13.
    Meyer, F.: Levelings, image simplification filters for segmentation. Journal of Mathematical Imaging and Vision 20, 59–72 (2004)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Angulo, J., Serra, J.: Color segmentation by ordered mergings. In: Proc. of the Int. Conf. on Image Processing. vol. II, pp. 125–128 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Allan Hanbury
    • 1
  1. 1.Pattern Recognition and Image Processing Group (PRIP), Institute of Computer Aided Automation, Vienna University of Technology, Favoritenstraße 9/1832, A-1040 ViennaAustria

Personalised recommendations