Graph Cuts Approach to MRF Based Linear Feature Extraction in Satellite Images

  • Anesto del-Toro-Almenares
  • Cosmin Mihai
  • Iris Vanhamel
  • Hichem Sahli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4756)


This paper investigates the use of graph cuts for the minimization of an energy functional for road detection in satellite images, defined on the Bayesian MRF framework. The road identification process is modeled as a search for the optimal binary labeling of the nodes of a graph, representing a set of detected segments and possible connections among them. The optimal labeling corresponds to the configuration that minimizes an energy functional derived from a MRF probabilistic model, that introduces contextual knowledge about the shape of roads. We formulate an energy function modeling the interactions between road segments, while satisfying the regularity conditions required by the graph cuts based minimization. The obtained results show a noticeable improvement in terms of processing time, while achieving good results.


road detection graph cuts MRF-MAP labeling 


  1. 1.
    Mena, J.B.: State of the art on automatic road extraction for GIS update: a novel classification. Pattern Recognition Letters. 24(16), 3037–3058 (2003)CrossRefGoogle Scholar
  2. 2.
    Tupin, F., Maitre, H., Mangin, J.F., Nicolas, J.M., Pechersky, E.: Detection of Linear Features in SAR Images: Application to road network extraction. IEEE Trans. on Geoscience and Remote Sensing. 36(2), 434–453 (1998)CrossRefGoogle Scholar
  3. 3.
    Chanussot, J., Lambert, P.: An application of mathematical morphology to road network extraction on SAR images. In: Proc. 4th Int. Sym. On Mathematical Morphology and its App. to Image and Signal Processing, Amsterdam, pp. 399–406 (1998)Google Scholar
  4. 4.
    Merlet, N., Zerubia, J.: New prospects in line detection by dynamic programming. IEEE Trans. Pattern Anal. Mach. Intell. 18(4), 426–431 (1996)CrossRefGoogle Scholar
  5. 5.
    Geman, D., Jedynak, B.: An active testing model for tracking roads in satellite images. IEEE Trans. Pattern Anal. Mach. Intell. 18(1), 1–14 (1996)CrossRefGoogle Scholar
  6. 6.
    Tupin, F., Houshmand, B., Datcu, M.: Road detection in dense urban areas using SAR imagery and the usefulness of multiple views. IEEE Trans. on Geoscience and Remote Sensing. 40(11), 2405–2414 (2002)CrossRefGoogle Scholar
  7. 7.
    Katartzis, A., Pizurica, V., Sahli, H.: Application of mathematical morphology and Markov random field theory to the automatic extraction of linear features in airborne images. In: Proc. 5th Int. Sym. On Mathematical Morphology and its Applications to Image and Signal Processing. California, pp. 405–414 (2000)Google Scholar
  8. 8.
    Katartzis, A., Sahli, H., Pizurica, V., Cornelis, J.: A model-based approach to the automatic extraction of linear features from airborne images. IEEE Trans. on Geoscience and Remote Sensing 39(9), 2073–2079 (2001)CrossRefGoogle Scholar
  9. 9.
    Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2004)CrossRefGoogle Scholar
  10. 10.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9) (2004)Google Scholar
  11. 11.
    Li, S.Z.: Markov random field modeling in computer vision, 1st edn. Springer-Verlag, New York Berlin Heidelberg Tokyo (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Anesto del-Toro-Almenares
    • 1
    • 2
  • Cosmin Mihai
    • 1
  • Iris Vanhamel
    • 1
  • Hichem Sahli
    • 1
  1. 1.Vrije Universiteit Brussel, Dept. of Electronics and Informatics, VUB-ETRO Pleinlaan 2, B-1050, BrusselsBelgium
  2. 2.Univ. Central de Las Villas, Center for Studies on Electronics and Information Technologies, Carr. a Camanjuani Km 5 1/2, CP-54830, Villa ClaraCuba

Personalised recommendations