Fuzzy Vector Directional Filters for Multichannel Image Denoising

  • Alberto Rosales-Silva
  • Volodymyr I. Ponomaryov
  • Francisco J. Gallegos-Funes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4756)

Abstract

We propose a fuzzy logic recursive scheme using directional processing for motion detection and spatial-temporal filtering to decrease Gaussian noise corruption. We introduce novel ideas that employ the differences between images. That permits to connect these using angle deviations in them obtaining several parameters and applying them in the robust algorithm that is capable to detect and differentiate movement in background of noise in any way.

Keywords

Fuzzy Logic Video Sequences Motion Vectors 

References

  1. 1.
    Zlokolica, V., De Geyter, M., Schulte, S., Pizurica, A., Philips, W., Kerre, E.: Fuzzy Logic Recursive Motion Detection for Tracking and Denoising of Video Sequences. In: IS&T/SPIE Symposium on Electronic Imaging, San Jose, California, USA, pp. 771–782 (2005)Google Scholar
  2. 2.
    Zlokolica, V.: Advanced Non-Linear Methods for Video Denoising. PhD Thesis, Gent University (2006)Google Scholar
  3. 3.
    Zlokolica, V., Schulte, S., Pizurica, A., Philips, W., Kerre, E.: Fuzzy Logic Recursive Motion Detection and Denoising of Video Sequences. Journal of Electronic Imaging 15(2), 023008 (2006)CrossRefGoogle Scholar
  4. 4.
    Trahanias, P.E., Venetsanopoulos, A.N.: Vector Directional Filters-A New Class of Multichannel Image Processing Filters. IEEE Transactions on Image Processing 2(4), 528–534 (1993)CrossRefGoogle Scholar
  5. 5.
    Plataniotis, K.N., Venetsanopoulos, A.N.: Color Image Processing and Applications. Springer, Berlin (2000)Google Scholar
  6. 6.
    Schulte, S., De Witte, V., Nachtegael, M., Van der Weken, D., Kerre, E.: Fuzzy Two-Step Filter for Impulse Noise Reduction from Color Images. IEEE Transactions on Image Processing 15(11), 3567–3578 (2006)CrossRefGoogle Scholar
  7. 7.
    Fuzzy Logic Fundamentals, ch. 3, pp. 61–103 (2001) www.informit.com/content/images/0135705991/samplechapter/0135705991.pdf
  8. 8.
    Gallegos-Funes, F., Ponomaryov, V., De-La- Rosa, J.: ABST M-type K-nearest neighbor (ABSTM-KNN) for image denoising. IEICE Trans. Funds. Electronics Comms. Computer Science E88A(3), 798–799 (2005)CrossRefGoogle Scholar
  9. 9.
    Ponomaryov, V.I., Gallegos-Funes, F.J., Rosales-Silva, A.: Real-Time Color Imaging Based on RM-Filters for Impulsive Noise Reduction. J. Imaging Science and Technology 49(3), 205–219 (2005)MathSciNetGoogle Scholar
  10. 10.
    Trahanias, P.E., Karakos, D.G., Venetsanopoulos, A.N.: Directional Processing of Color Images: Theory and Experimental Results. IEEE Trans. Image Process. 5(6), 868–880 (1996)CrossRefGoogle Scholar
  11. 11.
    Plataniotis, K.N., Androutsos, D., Vinayagamoorthy, S., Venetsanopoulos, A.N.: Color Image Processing Using Adaptive Multichannel Filters. IEEE Trans. Image Process. 6(7), 933–949 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Alberto Rosales-Silva
    • 1
  • Volodymyr I. Ponomaryov
    • 1
  • Francisco J. Gallegos-Funes
    • 2
  1. 1.National Polytechnic Institute of Mexico, Mechanical and Electrical Engineering Higher School ESIME-Culhuacan; Av. Santa Ana 1000, Col. San Francisco Culhuacan, 04430, Mexico D.F.Mexico
  2. 2.National Polytechnic Institute of Mexico, Mechanical and Electrical Engineering Higher School ESIME-Zacatenco; Av. IPN s/n, U.P.A.L.M. Col. Lindavista, 07738, Mexico D.F.Mexico

Personalised recommendations