Skip to main content

Orbitally Quantized Density-Wave States Perturbed from Equilibrium

  • Chapter
The Physics of Organic Superconductors and Conductors

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 110))

  • 2084 Accesses

We consider the effect that experimental changes in the magnetic induction B have in causing an orbitally quantized field-induced spin- or charge density wave (FISDW or FICDW) state to depart from thermodynamic equilibrium. The competition between elastic forces of the density wave (DW) and pinning leads to the realization of a critical state that is in many ways analogous to that realized within the vortex state of type II superconductors. Such a critical state has been verified experimentally in charge-transfer salts of the composition α-(BEDTTTF) 2 MHg(SCN)4, but should be a generic property of all orbitally quantized DW phases. The metastable state consists of a balance between the DW pinning force and the Lorentz force on extended currents associated with drifting cyclotron orbits, resulting in the establishment of persistent currents throughout the bulk and to the possibly of a three-dimensional ‘chiral metal’ that extends deep into the interior of a crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.H. Brandt, Rep. Prog. Phys. 58, 1465 (1995)

    Article  ADS  Google Scholar 

  2. D.C. Tsui, H.L. Stormer, A.C. Gossard, Phys. Rev. Lett. 48, 1559 (1982)

    Article  ADS  Google Scholar 

  3. L.P. Gor’kov, A.G. Lebed, J. Phys. Lett. (France) 45, L433 (1984); M. Ribault, J. Cooper, D. Jerome, D. Mailly, A. Moradpour, K. Bechgaard, J. Phys. Lett. (France) 45, L935 (1984); M. Heritier, G. Montambaux, P. Lederer, J. Phys. Lett. (France) 45, L943 (1984)

    Google Scholar 

  4. F.I.B. Williams, P.A. Wright, R.G. Clark, E.Y. Andrei, G. Deville, D.C. Glattli, O. Probst, B. Etienne, C. Dorin, C.T. Foxon, J.J. Harris, Phys. Rev. Lett. 66, 3285 (1991)

    Article  ADS  Google Scholar 

  5. S. Hill, S. Uji, M. Takashita, C. Terakura, T. Terashima, H. Aoki, J.S. Brooks, Phys. Rev. B 58, 10778 (1998)

    Article  ADS  Google Scholar 

  6. N. Harrison, L. Balicas, J.S. Brooks, J.S. Sarrao, Z. Fisk, Phys. Rev. B 61, 14299 (2000)

    Article  ADS  Google Scholar 

  7. J.E. Hoffman, E.W. Hudson, K.M. Lang, V. Madhavan, H. Eisaki, S. Uchida, J.C. Davis, Science 295, 466 (2002)

    Article  ADS  Google Scholar 

  8. D. Andres, M.V. Kartsovnik, P.D. Grigoriev, W. Biberacher, H. Muller, Phys. Rev. B 68, 201101 (2003)

    Article  ADS  Google Scholar 

  9. N. Harrison, J. Singleton, A. Bangura, A. Ardavan, P.A. Goddard, R.D. McDonald, L.K. Montgomery, Phys. Rev. B 69, 165103 (2004)

    Article  ADS  Google Scholar 

  10. D. Graf, E.S. Choi, J.S. Brooks, M. Matos, R.T. Henriques, M. Almeida, Phys. Rev. Lett. 93, 076406 (2004); R.D. McDonald, N. Harrison, J. Singleton, A. Bangura, P.A. Goddard, A.P. ramirez, X. Chi, Phys. Rev. Lett. 94, 106404 (2005)

    Article  ADS  Google Scholar 

  11. S.T. Hannahs, J.S. Brooks, W. Kang, L.Y. Chiang, P.M. Chaikin, Phys. Rev. Lett. 63, 1988 (1989)

    Article  ADS  Google Scholar 

  12. P.M. Chaikin, J. Phys. I (France) 6, 1875 (1996)

    Article  Google Scholar 

  13. G. Grüner, in Density Waves in Solids, Frontiers in Physics, vol. 89 (Addison-Wesley, Reading, MA, 1994)

    Google Scholar 

  14. S. Senoussi, J. Phys. III (France) 2, 1041 (1992)

    Article  Google Scholar 

  15. L. Balents, M.P.A. Fisher, Phys. Rev. Lett. 76, 2782 (1995)

    Article  ADS  Google Scholar 

  16. N. Harrison, M.M. Honold, M.V. Kartsovnik, J. Singleton, S.T. Hannahs, D.G. Rickel, N.D. Kushch, Phys. Rev. B 55, R16005 (1997)

    Article  ADS  Google Scholar 

  17. N. Harrison, Phys. Rev. B 66, 121101 (2002)

    Article  ADS  Google Scholar 

  18. N. Harrison, L. Balicas, J.S. Brooks, M. Tokumoto, Phys. Rev. B 62, 14212 (2000)

    Article  ADS  Google Scholar 

  19. M.J. Naughton, J.S. Brooks, L.Y. Chiang, R.V. Chamberlin, P.M. Chaikin, Phys. Rev. Lett. 55, 969 (1985)

    Article  ADS  Google Scholar 

  20. A.H. MacDonald, T.M. Rice, W.F. Brinkman, Phys. Rev. B 28, 3648 (1983)

    Article  ADS  Google Scholar 

  21. N. Harrison, Phys. Rev. Lett. 83, 1395 (1999)

    Article  ADS  Google Scholar 

  22. N. Harrison, R. Bogaerts, P.H.P. Reinders, J. Singleton, S.J. Blundell, F. Herlach, Phys. Rev. B 54, 9977 (1996)

    Article  ADS  Google Scholar 

  23. T. Ishiguro, K. Yamaji, Organic Superconductors (Springer, Berlin Heidelberg New York, 1990).

    Google Scholar 

  24. A.G. Lebed, H.-I. Ha, M.J. Naughton, Phys. Rev. B 71, 132504 (2005)

    Article  ADS  Google Scholar 

  25. N. Harrison, C.H. Mielke, J. Singleton, J.S. Brooks, M. Tokumoto, J. Phys. Cond. Matt. 14, L389 (2001)

    Article  Google Scholar 

  26. L.R. Testardi, Phys. Lett. 35A, 33 (1971)

    ADS  Google Scholar 

  27. J. Maza, F. Vidal, Phys. Rev. B 43, 10560 (1991)

    Article  ADS  Google Scholar 

  28. J.A. Veira, F. Vidal, Physica C 159, 468 (1989)

    Article  Google Scholar 

  29. S.W. Hsu, S.Y. Tsaur, H.C. Ku, Phys. Rev. B 38, 856 (1988)

    Article  ADS  Google Scholar 

  30. J.G. Bednorz, K.A. Muller, Z. Phys. B 64, 189 (1986)

    Article  ADS  Google Scholar 

  31. H. Fröhlich, Proc. R. Soc. Ser. A 223, 296 (1954)

    Article  MATH  ADS  Google Scholar 

  32. B. Huckestein, Rev. Mod. Phys. 67, 357 (1995)

    Article  ADS  Google Scholar 

  33. N. Harrison, A. House, I. Deckers, J. Caulfield, J. Singleton, F. Herlach, W. Hayes, M. Kurmoo, P. Day, Phys. Rev. B 52, 5584 (1995)

    Article  ADS  Google Scholar 

  34. S. Hill, P.S. Sandhu, J.S. Qualls, J.S. Brooks, M. Tokumoto, N. Kinoshita, Y. Tanaka, Phys. Rev. B 55, R4891 (1997)

    Article  ADS  Google Scholar 

  35. M.M. Honold, N. Harrison, J. Singleton, H. Yaguchi, C. Mielke, D. Ricket, I. Deckers, P.H.P. Reinders, F. Herlach, M. Kurmooo, P. Day, J. Phys. Cond.: Matt. 9, L533 (1997)

    Article  ADS  Google Scholar 

  36. K. Lijima, Y. Tomita, R. Takayama, I. Ueda, J. Appl. Phys. 60, 361 (1986)

    Article  ADS  Google Scholar 

  37. T. Fujita, T. Sasaki, N. Yoneyama, N. Kobayashi, J. Phys. Soc. Jpn. 73, 1525 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Harrison, N., McDonald, R.D., Singleton, J. (2008). Orbitally Quantized Density-Wave States Perturbed from Equilibrium. In: Lebed, A. (eds) The Physics of Organic Superconductors and Conductors. Springer Series in Materials Science, vol 110. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76672-8_18

Download citation

Publish with us

Policies and ethics