Context-Sensitive Microlearning of Foreign Language Vocabulary on a Mobile Device

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4794)


We explore the use of ubiquitous sensing in the home for context-sensitive microlearning. To assess how users would respond to frequent and brief learning interactions tied to context, a sensor-triggered mobile phone application was developed, with foreign language vocabulary as the learning domain. A married couple used the system in a home environment, during the course of everyday activities, for a four-week study period. Built-in and stick-on multi-modal sensors detected the participants’ interactions with hundreds of objects, furniture, and appliances. Sensor activations triggered the audio presentation of English and Spanish phrases associated with object use. Phrases were presented on average 57 times an hour; this intense interaction was found to be acceptable even after extended use. Based on interview feedback, we consider design attributes that may have reduced the interruption burden and helped sustain user interest, and which may be applicable to other context-sensitive, always-on systems.


microlearning language learning context-sensitive context-triggered mobile phone sensors home deployments 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hug, T., Gassler, G., Glahn, C.: Integrated micro learning - an outline of the basic method and first results. In: Proceedings of Interactive Computer Aided Learning, pp. 1–7. Kassel Univeristy Press (2004)Google Scholar
  2. 2.
    Hug, T.: Micro Learning and narration. In: Fourth Media and Transition Conference, Cambridge, MA (2005)Google Scholar
  3. 3.
    Dempster, F.N.: Effects of variable encoding and spaced presentations on vocabulary learning. Journal of Educational Psychology 79(2), 162–170 (1987)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Tulving, E., Thompson, D.M.: Encoding specificity and retrieval processes in episodic memory. Psychological Review 80(5), 352–373 (1973)CrossRefGoogle Scholar
  5. 5.
    Davies, G., Thomson, D.M.: Memory in context: Context in memory, vol. ix, p. 359. J. Wiley, Chichester (1988)Google Scholar
  6. 6.
    Godden, D.R., Baddeley, A.D.: Context-dependent memory in two natural environments: On land and underwater. British Journal of Psychology 66(3), 325–331 (1975)Google Scholar
  7. 7.
    Smith, S.M., Vela, E.: Environmental context-dependent memory: A review and meta-analysis. Psychonomic Bulletin & Review 8, 203–220 (2001)Google Scholar
  8. 8.
    Brown, H.D.: Principles of Language Learning and Teaching, 2nd edn., vol. xvi, p. 285. Prentice-Hall, Englewood Cliffs, N.J. (1987)Google Scholar
  9. 9.
    Importance of learning a second language survey, in Gallup Poll (2001)Google Scholar
  10. 10.
    McGinnis, S.: The less common alternative: A report from the task force for teacher training for the less commonly taught languages. ADFL Bulletin 25(2), 17–22 (1994)Google Scholar
  11. 11.
    Nation, I.S.P.: How large a vocabulary is needed for reading and listening? The Canadian Modern Language Review 63(1), 59–82 (2006)Google Scholar
  12. 12.
    Faaborg, A., Espinosa, J.: Using common sense reasoning to enhance language translation with mobile devices. Last accessed (March 2007),
  13. 13.
    Thorton, P., Houser, C.: Using mobile phones in English education in Japan. Journal of Computer Assisted Learning 21(3), 217–228 (2005)CrossRefGoogle Scholar
  14. 14.
    Wilson, D.H., Atkeson, C.: Simultaneous tracking & activity recognition (STAR) using many anonymous, binary sensors. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 62–79. Springer, Heidelberg (2005)Google Scholar
  15. 15.
    Philipose, M., Smith, J.R., Jiang, B., Mamishev, A., Roy, S., Sundara-Rajan, K.: Battery-free wireless identification and sensing. IEEE Pervasive Computing 4(1), 37–45 (2005)CrossRefGoogle Scholar
  16. 16.
    Tapia, E.M., Intille, S.S., Larson, K.: Activity recognition in the home setting using simple and ubiquitous sensors. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 158–175. Springer, Heidelberg (2004)Google Scholar
  17. 17.
    Intille, S.S., Larson, K., Tapia, E.M., Beaudin, J., Kaushik, P., Nawyn, J., Rockinson, R.: Using a live-in laboratory for ubiquitous computing research. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.) PERVASIVE 2006. LNCS, vol. 3968, pp. 349–365. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Fishkin, K.P., Philipose, M.: Hands-on RFID: Wireless wearables for detecting use of objects. In: ISWC 2005, pp. 38–43 (2005)Google Scholar
  19. 19.
    Patel, S.N., Kientz, J.A., Hayes, G.R., Bhat, S., Abowd, G.D.: Farther than you may think: An empirical investigation of the proximity of users to their mobile phones. In: Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 123–140. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Beaudin, J.S., Intille, S.S., Morris, M.: MicroLearning on a mobile device. In: Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, Springer, Heidelberg (2006)Google Scholar
  21. 21.
    Intille, S.S., Lee, V., Pinhanez, C.: Ubiquitous computing in the living room: Concept sketches and an implementation of a persistent user interface. In: Dey, A.K., Schmidt, A., McCarthy, J.F. (eds.) UbiComp 2003. LNCS, vol. 2864, Springer, Heidelberg (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.House_n, Massachusetts Institute of Technology, One Cambridge Center, 4FL, Cambridge, MA 02142USA
  2. 2.Digital Health Group, Intel Corporation, 20270 NW AmberGlen Court; AG1-102, Beaverton OR 97006USA

Personalised recommendations