Skip to main content

Call-by-Name and Call-by-Value in Normal Modal Logic

  • Conference paper
Programming Languages and Systems (APLAS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 4807))

Included in the following conference series:

Abstract

This paper provides a call-by-name and a call-by-value calculus, both of which have a Curry-Howard correspondence to the minimal normal logic K. The calculi are extensions of the λμ-calculi, and their semantics are given by CPS transformations into a calculus corresponding to the intuitionistic fragment of K. The duality between call-by-name and call-by-value with modalities is investigated in our calculi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abe, T.: Completeness of modal proofs in first-order predicate logic. Computer Software, JSSST Journal (to appear)

    Google Scholar 

  2. Barber, A.: Dual intuitionistic linear logic. Technical report, LFCS, University of Edinburgh (1996)

    Google Scholar 

  3. Barendregt, H.P.: Lambda calculi with types. In: Abramski, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 2, pp. 117–309. Oxford University Press, Oxford (1992)

    Google Scholar 

  4. Bellin, G., de Paiva, V.C.V., Ritter, E.: Extended Curry-Howard correspondence for a basic constructive modal logic. In: Proceedings of Methods for Modalities (2001)

    Google Scholar 

  5. Bierman, G.M.: What is a categorical model of intuitionistic linear logic. In: Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp. 78–93. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  6. Bierman, G.M., de Paiva, V.C.V.: On an intuitionistic modal logic. Studia Logica 65(3), 383–416 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  8. Davies, R., Pfenning, F.: A modal analysis of staged computation. Journal of the ACM 48(3), 555–604 (2001)

    Article  MathSciNet  Google Scholar 

  9. de Groote, P.: A cps-translation of the λμ-calculus. In: Tison, S. (ed.) CAAP 1994. LNCS, vol. 787, pp. 85–99. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  10. Filinski, A.: Declarative continuations and categorical duality. Master’s thesis, Computer Science Department, University of Copenhagen (1989)

    Google Scholar 

  11. Fischer, M.: Lambda calculus schemata. In: Proving Assertions about Programs, pp. 104–109. ACM Press, New York (1972)

    Chapter  Google Scholar 

  12. Girard, J.-Y.: Linear logic. Theoretical Computer Science 50(1), 1–102 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  13. Griffin, T.G.: A formulae-as-types notion of control. In: Principles of Programming Languages, pp. 47–58. ACM Press, New York (1990)

    Google Scholar 

  14. Hofmann, M., Streicher, T.: Continuation models are universal for λμ-calculus. In: Logic in Computer Science, pp. 387–397. IEEE Computer Society Press, Los Alamitos (1997)

    Google Scholar 

  15. Howard, W.A.: The formulae-as-types notion of construction. In: Essays on Combinatory Logic, Lambda Calculus and Formalism, pp. 479–490. Academic Press, London (1980)

    Google Scholar 

  16. Kakutani, Y.: Duality between call-by-name recursion and call-by-value iteration. In: Bradfield, J.C. (ed.) CSL 2002 and EACSL 2002. LNCS, vol. 2471, pp. 506–521. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  17. Kakutani, Y.: Calculi for intuitionistic normal modal logic. In: Proceedings of Programming and Programming Languages (2007)

    Google Scholar 

  18. Kripke, S.: Semantic analysis of modal logic I, normal propositional logic. Zeitschrift für Mathemathische Logik und Grundlagen der Mathematik 9, 67–96 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lambek, J., Scott, P.J.: Introduction to Higher-Order Categorical Logic. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  20. Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer, Heidelberg (1997)

    Google Scholar 

  21. Maietti, M.E., Maneggia, P., de Paiva, V.C.V., Ritter, E.: Relating categorical semantics for intuitionistic linear logic. Applied Categorical Structures 13(1), 1–36 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Martini, S., Masini, A.: A computational interpretation of modal proofs. In: Proof Theory of Modal Logics, pp. 213–241. Kluwer Academic Publishers, Dordrecht (1996)

    Google Scholar 

  23. Miyamoto, K., Igarashi, A.: A modal foundation for secure information flow. In: Proceedings of Foundations of Computer Security (2004)

    Google Scholar 

  24. Moggi, E.: Computational lambda-calculus and monads. In: Logic in Computer Science, pp. 14–23. IEEE Computer Society Press, Los Alamitos (1989)

    Google Scholar 

  25. Ong, C.-H.L., Stewart, C.A.: A Curry-Howard foundation for functional computation with control. In: Principle of Programming Languages, pp. 215–227. ACM Press, New York (1997)

    Google Scholar 

  26. Parigot, M.: λμ-calculus: an algorithmic interpretation of classical natural deduction. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 190–201. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  27. Plotkin, G.D.: Call-by-name, call-by-value and the lambda calculus. Theoretical Computer Science 1(2), 125–159 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  28. Pym, D., Ritter, E.: On the semantics of classical disjunction. Journal of Pure and Applied Algebra 159(2,3), 315–338 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  29. Seely, R.A.G.: Linear logic, ∗-autonomous categories and cofree coalgebras. In: Categories in Computer Science and Logic. Contemporary Mathematics, vol. 92, pp. 371–389. AMS (1989)

    Google Scholar 

  30. Selinger, P.: Control categories and duality: on the categorical semantics of the lambda-mu calculus. Mathematical Structures in Computer Science 11(2), 207–260 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  31. Selinger, P.: Some remarks on control categories. Manuscript (2003)

    Google Scholar 

  32. Shan, C.-C.: A computastional interpretation of classical S4 modality. In: Proceedings of Intuitionistic Modal Logics and Applications (2005)

    Google Scholar 

  33. Simpson, A.K.: The Proof Theory and Semantics of Intuitionistic Modal Logics. PhD thesis, University of Edinburgh (1993)

    Google Scholar 

  34. Wadler, P.: Call-by-value is dual to call-by-name. In: International Conference on Functional Programming, pp. 189–201. ACM Press, New York (2003)

    Google Scholar 

  35. Wijesekera, D.: Constructive modal logic I. Annals of Pure and Applied Logic 50, 271–301 (1990)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Zhong Shao

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kakutani, Y. (2007). Call-by-Name and Call-by-Value in Normal Modal Logic. In: Shao, Z. (eds) Programming Languages and Systems. APLAS 2007. Lecture Notes in Computer Science, vol 4807. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76637-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76637-7_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76636-0

  • Online ISBN: 978-3-540-76637-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics