Advertisement

Using Lexical Patterns for Extracting Hyponyms from the Web

  • Rosa M. Ortega-Mendoza
  • Luis Villaseñor-Pineda
  • Manuel Montes-y-Gómez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4827)

Abstract

This paper describes a method for extracting hyponyms from free text. In particular it explores two main matters. On the one hand, the possibility of reaching favorable results using only lexical extraction patterns. On the other hand, the usefulness of measuring the instance’s confidences based on the pattern’s confidences, and vice versa. Experimental results are encouraging because they show that the proposed method can be a practical high-precision approach for extracting hyponyms for a given set of concepts.

Keywords

Free Text Pattern Discovery Extraction Pattern Pointwise Mutual Information Base Vocabulary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blohm, S., Cimiano, P.: Learning Patterns from the Web - Evaluating the Evaluation Functions - Extended Abstract. In: OTT 2006. Ontologies in Text Technology: Approaches to Extract Semantic KnowledInformation, Osnabrück, Germany (2006)Google Scholar
  2. 2.
    Denicia, C., Montes, M., Villaseñor, L., García, R.: A Text Mining Approach for Definition Question Answering. In: Salakoski, T., Ginter, F., Pyysalo, S., Pahikkala, T. (eds.) FinTAL 2006. LNCS (LNAI), vol. 4139, Springer, Heidelberg (2006)Google Scholar
  3. 3.
    García-Hernández, R., Martínez-Trinidad, F., Carrasco-Ochoa, A.: A New Algorithm for Fast Discovery of Maximal Sequential Patterns in a Document Collection. In: International Conference on Computational Linguistics and text Processing, CICLing-2006. Mexico City, Mexico (2006)Google Scholar
  4. 4.
    Gelbukh, A., Sidorov, G.: Procesamiento automático del español con enfoque en recursos léxicos grandes. In: IPN, p. 240 (2006)Google Scholar
  5. 5.
    Hearst, M.: Automatic acquisition of hyponyms from large text corpora. In: Conference on Computational Linguistics (COLING-1992), Nantes, France (1992)Google Scholar
  6. 6.
    Lin, D., Zhao, S., Qin, L., Zhou, M.: Identifying synonyms among distributionally similar words. In: International Joint Conference of Artificial Intelligence (IJCAI-2003). Acapulco, Mexico (2003)Google Scholar
  7. 7.
    Lucero, C., Pinto, D., Jiménez, H.: A Tool for Automatic Detection of Antonymy Relations. In: Workshop on Herramientas y Recursos Linguísticos para el Español y el Portugués. IBERAMIA-2004. Puebla, Mexico (2004)Google Scholar
  8. 8.
    Mann, G.S.: Fine-Grained Proper Noun Ontologies for Question Answering. SemaNet-02: Building and Using Semantic Networks. Taipei, Taiwan (2002)Google Scholar
  9. 9.
    Pantel, P., Pennacchiotti, M.: Espresso: Leveraging Generic Patterns for Automatically Harvesting Semantic Relations. In: Conference on Computational Linguistics/Association for Computational Linguistics (COLING/ACL-2006), Sydney, Australia (2006)Google Scholar
  10. 10.
    Ravichandran, D., Pantel, P., Hovy, E.: The Terascale Challenge. In: Proceedings of KDD Workshop on Mining for and from the Semantic Web. Seattle, WA, USA (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Rosa M. Ortega-Mendoza
    • 1
  • Luis Villaseñor-Pineda
    • 1
  • Manuel Montes-y-Gómez
    • 1
  1. 1.Laboratorio de Tecnologías del Lenguaje, Instituto Nacional de Astrofísica, Óptica y ElectrónicaMéxico

Personalised recommendations