A New Hybrid Summarizer Based on Vector Space Model, Statistical Physics and Linguistics

  • Iria da Cunha
  • Silvia Fernández
  • Patricia Velázquez Morales
  • Jorge Vivaldi
  • Eric SanJuan
  • Juan Manuel Torres-Moreno
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4827)

Abstract

In this article we present a hybrid approach for automatic summarization of Spanish medical texts. There are a lot of systems for automatic summarization using statistics or linguistics, but only a few of them combining both techniques. Our idea is that to reach a good summary we need to use linguistic aspects of texts, but as well we should benefit of the advantages of statistical techniques. We have integrated the Cortex (Vector Space Model) and Enertex (statistical physics) systems coupled with the Yate term extractor, and the Disicosum system (linguistics). We have compared these systems and afterwards we have integrated them in a hybrid approach. Finally, we have applied this hybrid system over a corpora of medical articles and we have evaluated their performances obtaining good results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Afantenos, S.D., Karkaletsis, V., Stamatopoulos, P.: Summarization of medical documents: A survey. Artificial Intelligence in Medicine 2(33), 157–177 (2005)CrossRefGoogle Scholar
  2. 2.
    Alonso, L., Fuentes, M.: Integrating cohesion and coherence for Automatic Summarization. In: EACL 2003 Student Session, ACL, Budapest, pp. 1–8 (2003)Google Scholar
  3. 3.
    Aretoulaki, M.: COSY-MATS: A Hybrid Connectionist-Symbolic Approach To The Pragmatic Analysis Of Texts For Their Automatic Smmarization. PhD thesis, University of Manchester, Institute of Science and Technology, Manchester (1996)Google Scholar
  4. 4.
    Asterias, J., Comelles, E., Mayor, A.: TXALA un analizador libre de dependencias para el castellano. Procesamiento del Lenguaje Natural 35, 455–456 (2005)Google Scholar
  5. 5.
    Attardi, G.: Experiments with a Multilanguage Non-Projective Dependency Parser. In: Tenth Conference on Natural Language Learning, New York (2006)Google Scholar
  6. 6.
    Barzilay, R., Elhadad, M.: Using lexical chains for text summarization. In: Intelligent Scalable Text Summarization Workshop, ACL, Madrid, Spain (1997)Google Scholar
  7. 7.
    Brandow, R., Mitze, K., Rau, L.: Automatic condensation of electronic publications by sentence selection. Inf. Proc. and Management 31, 675–685 (1995)CrossRefGoogle Scholar
  8. 8.
    da Cunha, I., Ferraro, G., Cabre, T.: Propuesta de etiquetaje discursivo y sintáctico-comunicativo orientado a la evaluación de un modelo lingüístico de resumen automático. In: Conf. Asoc. Española de Lingüística Aplicada, Murcia (2007)Google Scholar
  9. 9.
    da Cunha, I., Wanner, L.: Towards the Automatic Summarization of Medical Articles in Spanish: Integration of textual, lexical, discursive and syntactic criteria. In: Crossing Barriers in Text Summarization Research, RANLP, Borovets (2005)Google Scholar
  10. 10.
    Edmundson, H.P.: New Methods in Automatic Extraction. Journal of the Association for Computing Machinery 16, 264–285 (1969)MATHGoogle Scholar
  11. 11.
    Fernández, S., SanJuan, E., Torres-Moreno, J.M.: Énergie textuelle de mémoires associatives. Traitement Automatique des Langues Naturelles, pp.25–34 (2007)Google Scholar
  12. 12.
    Goldstein, J., Carbonell, J., Kantrowitz, M., Mittal, V.: Summarizing text documents: sentence selection and evaluation metrics. In: 22nd Int. ACM SIGIR Research and development in information retrieval, pp. 121–128. ACM Press, New York (1999)CrossRefGoogle Scholar
  13. 13.
    Hajicova, E., Skoumalova, H., Sgall, P.: An Automatic Procedure for Topic-Focus Identification. Computational Linguistics 21(1) (1995)Google Scholar
  14. 14.
    Hertz, J., Krogh, A., Palmer, G.: Introduction to the theorie of Neural Computation. Addison-Wesley, Redwood City (1991)Google Scholar
  15. 15.
    Hopfield, J.: Neural networks and physical systems with emergent collective computational abilities. National Academy of Sciences 9, 2554–2558 (1982)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Kupiec, J., Pedersen, J.O., Chen, F.: A trainable document summarizer. In: SIGIR-1995, New York, pp. 68–73 (1995)Google Scholar
  17. 17.
    Lin, C.Y.: Rouge: A Package for Automatic Evaluation of Summaries. In: Workshop on Text Summarization Branches Out (WAS 2004), pp. 25–26 (2004)Google Scholar
  18. 18.
    Lin, C., Hovy, E.: Identifying Topics by Position. In: ACL Applied Natural Language Processing Conference, Washington, pp. 283–290 (1997)Google Scholar
  19. 19.
    Luhn, H.P.: The automatic creation of Literature abstracts. IBM Journal of research and development 2(2) (1959)Google Scholar
  20. 20.
    A., M.: Towards a Hybrid Abstract Generation System. In: Int. Conf. on New Methods in Language Processing, Manchester, pp. 220–227 (1994)Google Scholar
  21. 21.
    Mann, W.C., Thompson, S.A.: Rhetorical structure theory: Toward a functional theory of text organization. Text 8(3), 243–281 (1988)Google Scholar
  22. 22.
    Marcu, D.: The rhetorical parsing, summarization, and generation of natural language texts. PhD thesis, Dep. of Computer Science, University of Toronto (1998)Google Scholar
  23. 23.
    Marcu, D.: The Theory and Practice of Discourse Parsing Summarization. Institute of Technology, Massachusetts (2000)Google Scholar
  24. 24.
    Mel’cuk, I.: Dependency Syntax: Theory and Practice. Albany: State University Press of New York (1988)Google Scholar
  25. 25.
    Mel’cuk, I.: Communicative Organization in Natural Language. The semantic-communicative structure of sentences. John Benjamins, Amsterdam (2001)Google Scholar
  26. 26.
    Nomoto, T., Nitta, Y.: A Grammatico-Statistical Approach to Discourse Partitioning. In: 15th Int. Conf. on Comp. Linguistics, Kyoto, pp. 1145–1150 (1994)Google Scholar
  27. 27.
    Ono, K., Sumita, K., Miike, S.: Abstract generation based on rhetorical structure extraction. In: 15th Int. Conf. on Comp. Linguistics, Kyoto, pp. 344–348 (1994)Google Scholar
  28. 28.
    Pardo, T., Nunes, M., Rino, M.: DiZer: An Automatic Discourse Analyzer for Brazilian Portuguese. In: SBIA2004, São Luís, pp. 224–234 (2004)Google Scholar
  29. 29.
    Salton, G., McGill, M.: Introduction to modern information retrieval. Computer Science Series. McGraw Hill Publishing Company, New York (1983)MATHGoogle Scholar
  30. 30.
    Schmid, H.: Probabilistic Part-of-speech Tagging Using Decision Trees. In: International Conference on New Methods in Language Processing (1994)Google Scholar
  31. 31.
    Silber, H.G., McCoy, K.F.: Efficient text summarization using lexical chains. In: Intelligent User Interfaces, pp. 252–255 (2000)Google Scholar
  32. 32.
    Swales, J.: Genre Analysis: English in Academic and Research Settings. Cambridge University Press, Cambridge (1990)Google Scholar
  33. 33.
    Teufel, S., Moens, M.: Summarizing Scientific Articles: Experiments with Relevance and Rhetorical Status. Computational Linguistics 28 (2002)Google Scholar
  34. 34.
    Torres-Moreno, J.M., Velázquez-Morales, P., Meunier, J.G.: Condensés de textes par des méthodes numériques. In: JADT, St. Malo, pp. 723–734 (2002)Google Scholar
  35. 35.
    Vivaldi, J.: Extracción de candidatos a término mediante combinación de estrategias heterogéneas. PhD thesis, Universitat Politècnica de Catalunya, Barcelona, 2001.Google Scholar
  36. 36.
    Vivaldi, J.: Medical term extraction using the EWN ontology. In: Terminology and Knowledge Engineering, Nancy, pp. 137–142 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Iria da Cunha
    • 1
  • Silvia Fernández
    • 2
    • 4
  • Patricia Velázquez Morales
    • 1
  • Jorge Vivaldi
    • 1
  • Eric SanJuan
    • 2
  • Juan Manuel Torres-Moreno
    • 2
    • 3
  1. 1.Institute for Applied Linguistics, Universitat Pompeu Fabra, Barcelona, Espan̈a 
  2. 2.Laboratoire Informatique d’Avignon, BP1228, 84911 Avignon Cedex 9France
  3. 3.École Polytechnique de Montréal/DGI, Montréal (Québec)Canada
  4. 4.Laboratoire de Physique des Matériaux, CNRS UMR 7556, NancyFrance

Personalised recommendations