A Knowledge Synthesizing Approach for Classification of Visual Information

  • Le Dong
  • Ebroul Izquierdo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4781)

Abstract

An approach for visual information analysis and classification is presented. It is based on a knowledge synthesizing technique to automatically create a relevance map from essential areas in natural images. It also derives a set of well-structured representations from low-level description to drive the final classification. The backbone of this approach is a distribution mapping strategy involving a knowledge synthesizing module based on an intelligent growing when required network. Classification is achieved by simulating the high-level top-down visual information perception in primates followed by incremental Bayesian parameter estimation. The proposed modular system architecture offers straightforward expansion to include user relevance feedback, contextual input, and multimodal information if available.

Keywords

classification essence map knowledge synthesizing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Smeulders, A., Worring, M., Santini, S., Gupta, A., Jain, R.: Content Based Image Retrieval at the End of the Early Years. IEEE Trans. Patt. Anal. Mach. Intell. 22(12), 1349–1380 (2000)CrossRefGoogle Scholar
  2. 2.
    Manjunath, B.S., Salembier, P., Sikora, T.: Introduction to MPEG-7. In: Multimeida Content Description Interface, John Wiley & Sons, West Sussex (2003)Google Scholar
  3. 3.
    Dorado, A., Djordjevic, D., Pedrycz, W., Izquierdo, E.: Efficient Image Selection for Concept Learning. IEE Proc. on Vision, Image and Signal Processing 153(3), 263–273 (2006)CrossRefGoogle Scholar
  4. 4.
    Dorai, C., Venkatesh, S.: Bridging the Semantic Gap with Computational Media Aesthetics. IEEE Multimedia 10(2), 15–17 (2003)CrossRefGoogle Scholar
  5. 5.
    Dorado, A., Calic, J., Izquierdo, E.: A Rule-based Video Annotation System. IEEE Trans. on Circuits and Systems for Video Technology 14(5), 622–633 (2004)CrossRefGoogle Scholar
  6. 6.
    Goldstein, E.B.: Sensation and Perception, 4th edn. An international Thomson Publishing Company, USA (1996)Google Scholar
  7. 7.
    Park, S.J., An, K.H., Lee, M.: Saliency Map Model with Adaptive Masking Based on Independent Component Analysis. Neurocomputing 49, 417–422 (2002)CrossRefGoogle Scholar
  8. 8.
    Bell, A.J., Sejnowski, T.J.: The Independent Components of Natural Scenes Are Edge Filters. Vision Research 37, 3327–3338 (1997)CrossRefGoogle Scholar
  9. 9.
    Vetter, T., Poggio, T., Bülthoff, H.: The Importance of Symmetry and Virtual Views in Three-Dimensional Object Recognition. Current Biology 4, 18–23 (1994)CrossRefGoogle Scholar
  10. 10.
    Barlow, H.B., Tolhust, D.J.: Why Do You Have Edge Detectors? Optical Society of America Technical Digest 23(172) (1992)Google Scholar
  11. 11.
    Itti, L., Koch, C., Niebur, E.: A Model of Saliency-Based Visual Attention for Rapid Scene Analysis. IEEE Trans. Patt. Anal. Mach. Intell. 20(11), 1254–1259 (1998)CrossRefGoogle Scholar
  12. 12.
    Ratnaparkhi, A.: Maximum Entropy Models for Natural Language Ambiguity Resolution. Ph.D. Dissertation. Comp.and Inf. Science, Univ. of Pennsylvania, USA (1998)Google Scholar
  13. 13.
    Jasinschi, R.S., Dimitrova, N., McGee, T., Agnihotri, L., Zimmerman, J., Li, D., Louie, J.: A Probabilistic Layered Framework for Integrating Multimedia Content and Context Information. In: Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, vol. 2, pp. 2057–2060. IEEE Computer Society Press, Los Alamitos (2002)Google Scholar
  14. 14.
    Marsland, S., Shapiro, J., Nehmzow, U.: A Self-organising Network That Grows When Required. Neural Networks 15, 1041–1058 (2002)CrossRefGoogle Scholar
  15. 15.
    Vailaya, A., Figueiredo, M.A.T., Jain, A.K., Zhang, H.J.: Image Classification for Content-based Indexing. IEEE Trans. on Image Processing 10(1), 117–130 (2001)MATHCrossRefGoogle Scholar
  16. 16.
    Lanyon, L.J., Denham, S.L.: A Model of Active Visual Search with Object-based Attention Guiding Scan Paths. Neural Networks Special Issue: Vision & Brain 17(5-6), 873–897 (2004)MATHGoogle Scholar
  17. 17.
    Zhang, Q., Izquierdo, E.: A Multi-feature Optimization Approach to Object-based Image Classification. In: Sundaram, H., Naphade, M., Smith, J.R., Rui, Y. (eds.) CIVR 2006. LNCS, vol. 4071, pp. 310–319. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Li, F.F., Fergus, R., Perona, P.: A Bayesian Approach to Unsupervised One-shot Learning of Object Categories. In: Proc. IEEE Int. Conf. on Computer Vision, vol. 2, pp. 1134–1141. IEEE Computer Society Press, Los Alamitos (2003)CrossRefGoogle Scholar
  19. 19.
    Saatchi, S., Hung, Ch.: Hybridization of the Ant Colony Optimization with the K-Means Algorithm for Clustering. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 511–520. Springer, Heidelberg (2005)Google Scholar
  20. 20.
    Chandramouli, K., Izquierdo, E.: Image Classification Using Chaotic Particle Swarm Optimization. In: Proc. IEEE Int. Conf. on Image Processing, Atlanta, USA, pp. 3001–3004. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Le Dong
    • 1
  • Ebroul Izquierdo
    • 1
  1. 1.Department of Electronic Engineering, Queen Mary, University of London, London E1 4NSU.K.

Personalised recommendations