Skip to main content

Image Correspondence from Motion Subspace Constraint and Epipolar Constraint

  • Conference paper
Computer Vision – ACCV 2007 (ACCV 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4844))

Included in the following conference series:

Abstract

In this paper, we propose a novel method for inferring image correspondences on the pair of synchronized image sequences. In the proposed method, after tracking the feature points in each image sequence over several frames, we solve the image corresponding problem from two types of geometrical constraints: (1) the motion subspace obtained from the tracked feature points of a target sequence, and (2) the epipolar constraints between the two cameras. Dissimilarly to the conventional correspondence estimation based on image matching using pixel values, the proposed approach enables us to obtain the correspondences even though the feature points, that can be seen from one camera view, but can not be seen (occluded or outside of the view) from the other camera. The validity of our method is demonstrated through the experiments using synthetic and real images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lucas, B.D., Kanade, T.: An iterative image registration technique with an approach to stereo vision. In: Image Understanding Workshop, pp. 121–130 (1981)

    Google Scholar 

  2. Freeman, W., Adelson, E.: The design and use of steerable flters. PAMI 13(9), 891–906 (1991)

    Google Scholar 

  3. Lazebnik, S., Schmid, C., Ponce, J.: Sparse texture representation using affine-invariant neighborhoods. In: CVPR, pp. 319–324 (2003)

    Google Scholar 

  4. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)

    Article  Google Scholar 

  5. Kanatani, K.: Motion segmentation by subspace separation and model selection. In: ICCV, vol. 2, pp. 301–306 (2001)

    Google Scholar 

  6. Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography: A factorization method. IJCV 9(2), 137–154 (1992)

    Article  Google Scholar 

  7. Poelman, C.J., Kanade, T.: A paraperspective factorization method for shape and motion recovery. PAMI 19(3), 206–218 (1997)

    Google Scholar 

  8. Kanatani, K.: Motion segmentation by subspace separation: Model selection and reliability evaluation. IJIG 2(2), 179–197 (2002)

    Google Scholar 

  9. Costeria, J.P., Kanade, T.: A multibody factorization method for independently moving objects. IJCV 29(3), 159–179 (1998)

    Article  Google Scholar 

  10. Weng, J., Huang, T.S.: Complete structure and motion from two monochular sequences without stereo correspondence. In: ICPR, pp. 651–654 (1992)

    Google Scholar 

  11. Dornaika, F., Chung, R.: Stereo correspondence from motion correspondence. CVPR, 70–75 (1999)

    Google Scholar 

  12. Ho, P.K., Chung, R.: Stereo-motion with stereo and motion in complement. PAMI 22(2), 215–220 (2000)

    Google Scholar 

  13. Faugeras, O.D., Lustman, F., Toscani, G.: Motion and structure from point and line matches. In: ICCV (1987)

    Google Scholar 

  14. Zhang, Z.: Determining the epipolar geometry and its uncertainty: A review. IJCV 27(2), 161–198 (1998)

    Article  Google Scholar 

  15. Ho, P.-K., Chung, R.: Use of affine camera model and all stereo pairs in stereo-motion. In: IEEE International Conference on Intelligent Vehicles, pp. 323–328. IEEE Computer Society Press, Los Alamitos (1998)

    Google Scholar 

  16. Fischer, M.A.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Comm. ACM 26(6), 381–395 (1981)

    Article  Google Scholar 

  17. Vidal, R., Ma, Y., Sastry, S.: Generalized Principal Component Analysis (GPCA). PAMI 27(12) (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Yasushi Yagi Sing Bing Kang In So Kweon Hongbin Zha

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sugimoto, S., Takahashi, H., Okutomoi, M. (2007). Image Correspondence from Motion Subspace Constraint and Epipolar Constraint. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds) Computer Vision – ACCV 2007. ACCV 2007. Lecture Notes in Computer Science, vol 4844. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76390-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76390-1_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76389-5

  • Online ISBN: 978-3-540-76390-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics