Advertisement

Determining Relative Geometry of Cameras from Normal Flows

  • Ding Yuan
  • Ronald Chung
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4844)

Abstract

Determining the relative geometry of cameras is important in active binocular head or multi-camera system. Most of the existing works rely upon the establishment of either motion correspondences or binocular correspond-ences. This paper presents a first solution method that requires no recovery of full optical flow in either camera, nor overlap in the cameras’ visual fields and in turn the presence of binocular correspondences. The method is based upon observations that are directly available in the respective image stream – the monocular normal flow. Experimental results on synthetic data and real image data are shown to illustrate the potential of the method.

Keywords

Camera calibration Extrinsic camera parameters Active Vision 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bjorkman, M., Eklundh, J.O.: Real-time epipolar geometry estimation of binocular stereo heads. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(3) (March 2002)Google Scholar
  2. 2.
    Dornaika, F., Chung, R.: Stereo geometry from 3D ego-motion streams. IEEE Trans. On Systems, Man, and Cybernetics: Part B, Cybernetics 33(2) (April 2003)Google Scholar
  3. 3.
    Faugeras, O., Luong, T., Maybank, S.: Camera self-calibration: theory and experiments. In: Proc. 3rd European Conf. Computer Vision, Stockholm, Sweeden, pp. 471–478 (1994)Google Scholar
  4. 4.
    Fermüller, C., Aloimonos, Y.: Direct perception of 3D motion from patterns of visual motion. Science 270, 1973–1976 (1995)CrossRefGoogle Scholar
  5. 5.
    Fermüller, C., Aloimonos, Y.: Qualitative egomotion. Int’ Journal of Computer Vision 15, 7–29 (1995)CrossRefGoogle Scholar
  6. 6.
    Heikkil, J.: Geometric camera calibration using circular control points. IEEE Trans. Pattern Analysis and Machine Intelligence 22(10), 1066–1077 (2000)CrossRefGoogle Scholar
  7. 7.
    Knight, J., Reid, I.: Self-calibration of a stereo rig in a planar scene by data. combination. In: Proc. of the International Conference on Pattern Recognition, pp. 1411–1414 (September 2000)Google Scholar
  8. 8.
    Maybank, S.J., Faugeras, O.: A Theory of self-calibration of a moving camera. Int’ Journal of Computer Vision 8(2), 123–152 (1992)CrossRefGoogle Scholar
  9. 9.
    Takahashi, H., Tomita, F.: Self-calibration Of Stereo Cameras. In: Proc. 2nd Int’l Conference on Computer Vision, pp. 123–128 (1988)Google Scholar
  10. 10.
    Yuan, D., Chung, R.: Direct Estimation of the Stereo Geometry from Monocular Normal Flows. In: International Symposium on Visual Computing (1), pp. 303–312 (2006)Google Scholar
  11. 11.
    Zhang, Z., Luong, Q.-T., Faugeras, O.: Motion of an uncalibrated stereo rig: Self-calibration and metric reconstruction. IEEE Trans. on Robotics and Automation 12(1), 103–113 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Ding Yuan
    • 1
  • Ronald Chung
    • 1
  1. 1.Department of Mechanical & Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong KongChina

Personalised recommendations