Coarse-to-Fine Statistical Shape Model by Bayesian Inference

  • Ran He
  • Stan Li
  • Zhen Lei
  • ShengCai Liao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4843)


In this paper, we take a predefined geometry shape as a constraint for accurate shape alignment. A shape model is divided in two parts: fixed shape and active shape. The fixed shape is a user-predefined simple shape with only a few landmarks which can be easily and accurately located by machine or human. The active one is composed of many landmarks with complex shape contour. When searching an active shape, pose parameter is calculated by the fixed shape. Bayesian inference is introduced to make the whole shape more robust to local noise generated by the active shape, which leads to a compensation factor and a smooth factor for a coarse-to-fine shape search. This method provides a simple and stable means for online and offline shape analysis. Experiments on cheek and face contour demonstrate the effectiveness of our proposed approach.


Active shape model Bayesian inference statistical image analysis segmentation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cootes, T.F., Taylor, C.J., Cooper, D., Graham, J.: Active shape models-Their training and application. Comput. Vis. Image Understanding 61(1), 38–59 (1995)CrossRefGoogle Scholar
  2. 2.
    Cootes, T.F., Taylor, C.J.: Statistical models of appearance for computer vision, Wolfson Image Anal. Unit, Univ. Manchester, Manchester, U.K., Tech. Rep (1999)Google Scholar
  3. 3.
    Zhou, Y., Gu, L., Zhang, H.-J.: Bayesian tangent shape model: Estimating shape and pose parameters via Bayesian inference. In: IEEE Conf. on Computer Vision and Pattern Recognition, Madison, WI (June 2003)Google Scholar
  4. 4.
    Liang, L., Wen, F., Xu, Y.Q., Tang, X., Shum, H.Y.: Accurate Face Alignment using Shape Constrained Markov Network. In: Proc. CVPR (2006)Google Scholar
  5. 5.
    Li, Y.Z., Ito, W.: Shape parameter optimization for Adaboosted active shape model. In: ICCV, pp. 259–265 (2005)Google Scholar
  6. 6.
    Brox, T., Rosenhahn, B., Weickert, J.: Three-Dimensional Shape Knowledge for Joint Image Segmentation and Pose Estimation. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) Pattern Recognition. LNCS, vol. 3663, pp. 109–116. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Ginneken, B.V., Frangi, A.F., Staal, J.J., ter Har Romeny, B.M., Viergever, M.A.: Active shape model segmentation with optimal features. IEEE Transactions on Medical Imaging 21(8), 924–933 (2002)CrossRefGoogle Scholar
  8. 8.
    Sukno, F., Ordas, S., Butakoff, C., Cruz, S., Frangi, A.F.: Active shape models with invariant optimal features IOF-ASMs. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 365–375. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Zhang, S., Wu1, L.F., Wang, Y.: Cascade MR-ASM for Locating Facial Feature Points. The 2nd International Conference on Biometrics  (2007)Google Scholar
  10. 10.
    Dryden, I., Mardia, K.V.: The Statistical Analysis of Shape. Wiley, London, U.K (1998)Google Scholar
  11. 11.
    Goodall, C.: Procrustes methods in the statistical analysis of shapes. J.Roy. Statist. 53(2), 285–339 (1991)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Messer, K., Matas, J., Kittler, J., Luettin, J., Maitre, G.: XM2VTSDB: The extended M2VTS database. In: Proc. AVBPA, pp. 72–77 (1999)Google Scholar
  13. 13.
    Hamarneh, G.: Active Shape Models with Multi-resolution,
  14. 14.
    Kudo, M., Sklansky, J.: Comparison of algorithms that select features for pattern classiers. Pattern Recognition, 25–41 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Ran He
    • 1
  • Stan Li
    • 1
  • Zhen Lei
    • 1
  • ShengCai Liao
    • 1
  1. 1.Institute of Automation, Chinese Academy of Sciences, BeijingChina

Personalised recommendations