Skip to main content

Glutathione Reductase: A Putative Redox Regulatory System in Plant Cells

  • Chapter

Glutathione reductase (GR, EC 1.6.4.2) and glutathione (GSH, γ-Glu-Cys-Gly) are important components of the cell’s scavenging system for reactive oxygen compounds in plants. GSH is a major reservoir of nonprotein reduced sulfur. In addition, GSH plays a crucial role in cellular defense, where it gets oxidized to glutathione disulfide (GSSG). GR mediates the reduction of GSSG to GSH by using NADPH as an electron donor, and thus a highly reduced state of GSH/GSSG and ASA/DHA ratios is maintained at the intracellular level by this reaction during oxidative stress. GR activity has been shown to increase in various plant species under different types of stresses. Studies using transgenic plants have shown that GR plays an important role in providing resistance to oxidative stress caused by paraquat, methyl viologen, ozone, moderate chilling at high light intensity, drought, heavy metals, high light, salinity, and chilling. From the existing literature, it is clear that among the enzymatic and nonenzymatic antioxidative pathways, GR is one of the key enzymes in the active oxygen scavenging system, involving superoxide dismutase (SOD, EC 1.15.1.1) and the enzymes of ascorbate–glutathione cycle in higher plants. In this chapter, we review most recent information on the structural details of GR, its conserved domains, different isoforms, its role in sulfur assimilation and also its importance in maintaining redox balance of the plant cell under environmental and biotic stresses. Further, we discuss the transgenic approach to increase GR activities for developing improved tolerance to oxidative stress in plants.

Keywords

  • Transgenic Plant
  • Glutathione Reductase
  • Chilling Stress
  • Transgenic Poplar
  • Glutathione Reductase Activity

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-76326-0_6
  • Chapter length: 37 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-76326-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwal S (2007) Increased antioxidant activity in Cassia seedlings under UV-B radiation. Biol Plant 51:157–60

    CrossRef  CAS  Google Scholar 

  • Alscher RG (1989) Biosynthesis and antioxidant function of glutathione in plants. Physiol Plant 77:457–64

    CrossRef  CAS  Google Scholar 

  • Anderson JV, Hess JL, Chevone BI (1990) Purification, characterization and immunological properties for two isoforms of glutathione reductase from eastern white pine needles. Plant Physiol 94:1402–9

    PubMed  CrossRef  CAS  Google Scholar 

  • Anderson JV, Chevone BI, Hess JL (1992) Seasonal variation in the antioxidant system of eastern white pine needles: evidence for thermal dependence. Plant Physiol 98:501–8

    PubMed  CrossRef  CAS  Google Scholar 

  • Anderson MD, Prasad TK, Martin BA, Stewart CR (1994) Differential gene expression in chilling-acclimated maize seedlings and evidence for the involvement of abscisic acid in chilling tolerance. Plant Physiol 105:331–9

    PubMed  CAS  Google Scholar 

  • Ansel DC, Franklin MLT, De Carvalho MHC, Lameta ADA, Fodil YZ (2006) Glutathione reductase in leaves of cowpea: cloning of two cDNAs, expression and enzymatic activity under progressive drought stress desiccation and abscisic acid treatment. Ann Bot 98:1279–87

    CrossRef  CAS  Google Scholar 

  • Aono M, Kubo A, Saji H, Natori T, Tanaka K, Kondo N (1991) Resistance to active oxygen toxicity of transgenic Nicotiana tabacum that expresses the gene for glutathione reductase from Escherichia coli. Plant Cell Physiol 32:691–7

    CAS  Google Scholar 

  • Aono M, Kubo A, Saji H, Natori T, Tanaka K, Kondo N (1993) Enhanced tolerance to photo-oxidative stress of transgenic Nicotiana tabacum with high chloroplastic glutathione reductase activity. Plant Cell Physiol 34:129–35

    CAS  Google Scholar 

  • Aono M, Saji H, Fujiyama K, Sugita M, Kondo N, Tanaka K (1995a) Decrease in activity of glutathione reductase enhances paraquat sensitivity in transgenic Nicotiana tabacum. Plant Physiol 107:645–8

    PubMed  CAS  Google Scholar 

  • Aono M, Saji H, Sakamoto A, Tanaka K, Kondo N, Tanaka K (1995b) Paraquat tolerance of transgenic Nicotiana tabacum with enhanced activities of glutathione reductase and superoxide dismutase. Plant Cell Physiol 36:1687–91

    PubMed  CAS  Google Scholar 

  • Asada K (1994) Production and action of active oxygen species in photosynthetic tissues. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defense systems in plants, CRC Press, Boca Raton, pp. 77–104

    Google Scholar 

  • Asada K (2000) The water-water cycle as alternative photon and electron sinks. Phil Trans R Soc Lond B 355:1419–31

    CrossRef  CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–6

    PubMed  CrossRef  CAS  Google Scholar 

  • Baker CJ, Orlandi EW (1995) Active oxygen in plant pathogenesis. Annu Rev Phytopathol 33:299–321

    PubMed  CrossRef  CAS  Google Scholar 

  • Ball L, Accotto GP, Bechtold U, Creissen GP, Funck D, Jimenez A, Kular B, Leyland N, Mejia-Carranza J, Reynolds H, Karpinski S, Mullineaux PM (2004) Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell 16:2448–62

    PubMed  CrossRef  CAS  Google Scholar 

  • Barcelo J, Poschenrieder C, Vazquez MD, Gunse B (1996) Aluminium phytotoxicity: a challenge for plant scientists. Fertil Res 43:217–23

    CrossRef  Google Scholar 

  • Bhattacharjee S, Mukherjee AK (1994) Influence of cadmium and lead on physiological and biochemical responses of Vigna unguiculata (L.) Walp. seedlings. I. Germination behaviour, total protein and proline content and protease activity. Poll Res 13:269–77

    CAS  Google Scholar 

  • Bielawski W, Joy KW (1986) Properties of glutathione reductase from chloroplasts and roots of pea. Phytochemistry 25:2261–5

    CrossRef  CAS  Google Scholar 

  • Bolwell GP, Bindschedler LV, Blee KA, Butt VS, Davies DR, Gardner SL, Gerrish C, Minibayeva F (2002) The apoplastic oxidative burst in response to biotic stress in plants: a tree component system. J Exp Bot 53:1367–76

    PubMed  CrossRef  CAS  Google Scholar 

  • Boussama N, Ouariti O, Ghorbal MH (1999a) Changes in growth and nitrogen assimilation in barley seedlings under cadmium stress. J Plant Nutr 22:731–52

    CrossRef  CAS  Google Scholar 

  • Boussama N, Ouariti O, Suzuki A, Ghorbal MH (1999b) Cd stress on nitrogen assimilation. J Plant Physiol 155:310–17

    CAS  Google Scholar 

  • Broadbent P, Creissen GP, Kular B, Wellburn AR, Mullineaux PM (1995) Oxidative stress responses in transgenic tobacco containing altered levels of glutathione reductase activity. Plant J 8:247–55

    CrossRef  CAS  Google Scholar 

  • Bueno P, Piqueras A, Kurepa J, Savoure A, Verbruggen N, Van Montagu M, Inze D (1998) Expression of antioxidant enzymes in response to abscisic acid and high osmoticum in tobacco BY-2 cell cultures. Plant Sci 138:27–34

    CrossRef  CAS  Google Scholar 

  • Cakmak I (2000) Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205

    CrossRef  CAS  Google Scholar 

  • Campbell WH (1995) Enzyme mechanism examples. Michigan Technological University. BL/CH401 Lecture 16B

    Google Scholar 

  • Casano LM, Martin M, Zapata JM, Sabater B (1999) Leaf age and paraquat concentration-dependent effects on the levels of enzymes protecting against oxidative stress. Plant Sci 149:13–22

    CrossRef  CAS  Google Scholar 

  • Chaitanya KV, Sundar D, Masilamani S, Reddy AR (2002) Variation in heat stress-induced antioxidant enzyme activities among three mulberry cultivars. Plant Growth Regul 36:175–80

    CrossRef  CAS  Google Scholar 

  • Chang CJ, Kao CH (1997) Paraquat toxicity is reduced by metal chelators in rice leaves. Physiol Plant 101:471–6

    CrossRef  CAS  Google Scholar 

  • Chaoui A, Mazhoudi S, Ghorbal MH, El Ferjani E (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L). Plant Sci 127:139–47

    CrossRef  CAS  Google Scholar 

  • Chen KM, Gong HJ, Chen GC, Wang SM, Zhang CL (2004) Gradual drought under field conditions influences the glutathione metabolism, redox balance and energy supply in spring wheat. J Plant Growth Regul 23:20–8

    CrossRef  CAS  Google Scholar 

  • Chew O, Rudhe C, Glaser E, Whelan J (2003a) Characterization of the targeting signal of dual-targeted pea glutathione reductase. Plant Mol Biol 53:341–56

    PubMed  CrossRef  CAS  Google Scholar 

  • Chew O, Whelan J, Millar H (2003b) Molecular definition of the ascorbate glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. J Biol Chem 278:46869–77

    PubMed  CrossRef  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–48

    CAS  CrossRef  Google Scholar 

  • Clijsters H, Cuypers A, Vangronsveld J (1999) Physiological responses to heavy metals in plants: defense against oxidative stress. Z Naturforsch 54:730–4

    CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–32

    PubMed  CrossRef  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–82

    PubMed  CrossRef  CAS  Google Scholar 

  • Collison LP, Dawes IW (1995) Isolation, characterization and overexpression of the yeast gene, GLR1, encoding glutathione reductase. Gene 156:123–7

    CrossRef  Google Scholar 

  • Comai I, Facciotti D, Hiatt WR, Thompson G, Rose RE, Stalker DM (1985) Expression in plants of a mutant aroA gene from Salmonella typhimurium confers tolerance to glyphosate. Nature 317:741–4

    CrossRef  CAS  Google Scholar 

  • Comba ME, Benavides MP, Tomaro ML (1998) Effect of salt stress on antioxidant defense system in soybean root nodules. Aus J Plant Physiol 25:665–71

    CrossRef  CAS  Google Scholar 

  • Conklin PL, Last RL (1995) Differential accumulation of antioxidant mRNAs in Arabidopsis thaliana exposed to ozone. Plant Physiol 109:203–12

    PubMed  CrossRef  CAS  Google Scholar 

  • Conn EE, Vennesland B (1951) Glutathione reductase of wheat germ. J Biol Chem 192:17–28

    PubMed  CAS  Google Scholar 

  • Connell JP, Mullet JE (1986) Pea chloroplast glutathione reductase: purification and characterization. Plant Physiol 82:351–6

    PubMed  CrossRef  CAS  Google Scholar 

  • Creissen GP, Mullineaux PM (1995) Cloning and characterization of glutathione reductase cDNAs and identification of two genes encoding the tobacco enzyme. Planta 197:422–5

    PubMed  CrossRef  CAS  Google Scholar 

  • Creissen GP, Edwards EA, Enard C, Wellburn A, Mullineaux PM (1991) Molecular characterization of glutathione reductase cDNAs from pea (Pisum sativum L.). Plant J 2:129–31

    Google Scholar 

  • Creissen GP, Edwards EA, Mullineaux PM (1994) Glutathione reductase and ascorbate peroxidase. In: Foyer CH, PM Mullineaux PM (eds). Causes of photooxidative stress and amelioration of defense systems in plants, CRC Press, Boca Raton, pp. 343–64

    Google Scholar 

  • Creissen GP, Reynolds H, Xue Y, Mullineaux PM (1995) Simultaneous targeting of pea glutathione reductase and of a bacterial fusion protein to chloroplasts and mitochondria in transgenic tobacco. Plant J 8:167–75

    PubMed  CrossRef  CAS  Google Scholar 

  • Creissen GP, Broadbent P, Stevens R, Wellburn AR, Mullineaux PM (1996) Manipulation of glutathione metabolism in transgenic plants. Biochem Soc Trans 24:465–9

    PubMed  CAS  Google Scholar 

  • Creissen GP, Firmin J, Fryer M, Kular B, Leyland N, Reynolds H, Pastori G, Wellburn F, Baker N, Wellburn A, Mullineaux PM (1999) Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress. Plant Cell 11:1277–91

    PubMed  CrossRef  CAS  Google Scholar 

  • Davenport SB, Gallego SM, Benavides MP, Tomaro ML (2003) Behaviour of antioxidant defense system in the adaptive response to salt stress in Helianthus annuus L. cells. Plant Growth Regul 40:81–8

    CrossRef  CAS  Google Scholar 

  • Davletova S, Rizhsky L, Liang H, Shenggiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17:268–81

    PubMed  CrossRef  CAS  Google Scholar 

  • De Gara L, de Pinto MC, Tommasi F (2003) The antioxidant systems vis-a-vis reactive oxygen species during plant-pathogen interaction. Plant Physiol Biochem 41:863–70

    CrossRef  CAS  Google Scholar 

  • del Rio LA, Corpas FJ, Sandalio LM, Palma Jose M, Gomez M, Barroso JB (2002) Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J Exp Bot 53:1255–72

    PubMed  CrossRef  Google Scholar 

  • Demiral T, Turkan (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 53:247–57

    CrossRef  CAS  Google Scholar 

  • Desikan R, Mackerness AHS, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–72

    PubMed  CrossRef  CAS  Google Scholar 

  • Dhindsa RS (1991) Drought stress, enzymes of glutathione metabolism, oxidative injury and protein synthesis in Tortula ruralis. Plant Physiol 95:648–51

    PubMed  CrossRef  CAS  Google Scholar 

  • Dietz KJ, Baier M, Kramer U (1999) Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In: Prasad MNV, Hagemeyer J (eds): Heavy metal stress in plants: from molecules to ecosystems, Springer-Verlag, Berlin, pp. 73–9

    Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9

    CrossRef  CAS  Google Scholar 

  • Donahue JL, Okpodu CM, Cramer CL, Grabau EA, Alscher RG (1997) Responses of antioxidants to paraquat in pea leaves: relationships to resistance. Plant Physiol 113:249–57

    PubMed  CAS  Google Scholar 

  • Droux M (2004) Sulfur assimilation and the role of sulfur in plant metabolism: a survey. Photosynth Res 79:331–48

    PubMed  CrossRef  CAS  Google Scholar 

  • Drumm-Herrel H, Gerhausser U, Mohr H (1989) Differential regulation by phytochrome of the appearance of plastidic and cytoplasmic isoforms of glutathione reductase in mustard (Sinapsis alba L.) cotyledons. Planta 178:103–9

    CrossRef  CAS  Google Scholar 

  • Edwards EA, Rawsthorne S, Mullineaux PM (1990) Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (Pisum sativum L.). Planta 180:278–84

    CrossRef  CAS  Google Scholar 

  • Edwards EA, Enard C, Creissen GP, Mullineaux PM (1994) Synthesis and properties of glutathione reductase in stressed peas. Planta 192:137–43

    CAS  Google Scholar 

  • El-Saht HM (1998) Responses to chilling stress in French bean seedlings: antioxidant compounds. Biol Plant 41:395–402

    CrossRef  CAS  Google Scholar 

  • Ewais EA (1997) Effects of cadmium, nickel and lead on growth, chlorophyll content and proteins of weeds. Biol Plant 39:403–10

    CrossRef  CAS  Google Scholar 

  • Fadzilla NM, Robert P, Finch RP, Burdon RH (1997) Salinity, oxidative stress and antioxidant response in shoot cultures of rice. J Exp Bot 48:325–31

    CrossRef  CAS  Google Scholar 

  • Fahmy AS, Mohamed TM, Mohamed SA, Saker MM (1998) Effect of salt stress on antioxidant activities in cell suspension cultures of cantaloupe (Cucumis melo). Egyptian J Physiol Sci 22:315–26

    CAS  Google Scholar 

  • Fang WC, Wang JW, Lin CC, Kao CH (2001) Iron induction of lipid peroxidation and effect on antioxidative enzyme activities in rice leaves. Plant Growth Regul 35:75–80

    CrossRef  CAS  Google Scholar 

  • Fargasova A (2001) Phytotoxic effects of Cd, Zn, Pb, Cu and Fe on Sinapsis alba L. seedlings and their accumulation in roots and shoots. Biol Plant 44:471–3

    CrossRef  CAS  Google Scholar 

  • Ferreira RR, Fornazier RF, Vitoria AP, Lea PJ, Azevedo RA (2002) Changes in antioxidant enzyme activities in soybean under cadmium stress. J Plant Nutr 25:327–42

    CrossRef  CAS  Google Scholar 

  • Fornazier RF, Ferreira RR, Vitoria AP, Molina SMG, Lea PJ, Azevedo RA (2002) Effects of cadmium on antioxidant enzyme activities in sugarcane. Biol Plant 41:91–7

    CrossRef  Google Scholar 

  • Foyer CH, Halliwell (1976) The presence of glutathione and glutathione reductase in chlorophasts: A proposed role in ascorbate metabolism. Planta 133:21–5

    CrossRef  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–64

    CrossRef  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signalling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–75

    PubMed  CrossRef  CAS  Google Scholar 

  • Foyer CH, Dujardyn M, Lemoine Y (1989) Responses of photosynthesis and the xanthophylls and ascorbate-glutathione cycles to changes in irradiance, photoinhibition and recovery. Plant Physiol Biochem 27:751–60

    CAS  Google Scholar 

  • Foyer CH, Lelandais M, Galap C, Kunert KJ (1991) Effects of elevated cytosolic glutathione reductase activity on the cellular glutathione pool and photosynthesis in leaves under normal and stress conditions. Plant Physiol 97:863–72

    PubMed  CrossRef  CAS  Google Scholar 

  • Foyer CH, Descourvieres P, Kunert KI (1994) Protection against oxygen radicals: an important defense mechanism studied in transgenic plants. Plant Cell Physiol 17:507–23

    CAS  Google Scholar 

  • Foyer CH, Souriau N, Perret S, Lelandais M, Kunert KJ, Pruvost C, Jouanin L (1995) Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol 109:1047–57

    PubMed  CrossRef  CAS  Google Scholar 

  • Foyer CH, Theodoulou FL, Delrot S (2001) The functions of inter and intracellular glutathione transport systems in plants. Trends Plant Sci 6:486–92

    PubMed  CrossRef  CAS  Google Scholar 

  • Gachomo WE, Shonukan OO, Kotchoni OS (2003) The molecular initiation and subsequent acquisition of disease resistance in plants. Afr J Biotechnol 2:26–32

    CAS  Google Scholar 

  • Gallego SM, Benavides MP, Tomaro ML (1996) Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Sci 121:151–9

    CrossRef  CAS  Google Scholar 

  • Gamble PE, Burke JJ (1984) Effect of water stress on the chloroplastic antioxidant system. I. Alterations in glutathione reductase activity. Plant Physiol 76:615–21

    PubMed  CrossRef  CAS  Google Scholar 

  • Gaullier JM, Lafontant P, Valla A, Bazin M, Giraud M, Santus R (1994) Glutathione peroxidase and glutathione reductase activities towards glutathione derived antioxidants. Biochem Biophys Res Commun 203:1668–74

    PubMed  CrossRef  CAS  Google Scholar 

  • Ghisla S, Massey V (1989) Mechanisms of flavoprotein-catalyzed reactions Eur J Biochem 181:1–17

    CAS  Google Scholar 

  • Gogorcena Y, Iturbe-Ormaetxe I, Escuredo PR, Becana M (1995) Antioxidant defenses against activated oxygen in pea nodules subjected to water stress. Plant Physiol 108:753–9

    PubMed  CAS  Google Scholar 

  • Gong M, Li YJ, Chen SZ (1998) Abscisic acid-induced the tolerance in maize seedlings is mediated by calcium and associated with antioxidant systems. J Plant Physiol 153:488–96

    CAS  Google Scholar 

  • Greer S, Perham RN (1986) Glutathione reductase from Escherichia coli: cloning and sequence analysis of the gene and relationship to other flavoprotein disulfide oxidoreductases. Biochemistry 25:2736–42

    PubMed  CrossRef  CAS  Google Scholar 

  • Gueta-Dahan Y, Yaniv Z, Zilinkas BA, Ben-Hayyim G (1997) Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in citrus. Planta 203:460–9

    PubMed  CrossRef  CAS  Google Scholar 

  • Guy CL, Carter JV (1984) Characterization of partially purified glutathione reductase from cold-hardened and non hardened spinach leaf tissue. Cryobiology 21:454–64

    CrossRef  CAS  Google Scholar 

  • Halliwell B, Foyer CH (1978) Properties and physiological function of a glutathione reductase purified from spinach leaves by affinity chromatography. Planta 139:9–17

    CrossRef  CAS  Google Scholar 

  • Hartmann T, Honicke P, Wirtz M, Hell R, Rennenberg H, Kopriva S (2004) Regulation of sulphate assimilation by glutathione in poplars (Populus tremula X P. alba) of wild type and overexpressing x-glutamylcysteine synthetase in the cytosol. J Exp Bot 55:837–45

    PubMed  CrossRef  CAS  Google Scholar 

  • Hausladen A, Alscher RG (1993) Glutathione. In: Alsher R, Hess J (eds): Antioxidants in higher plants, CRC Press, Boca Raton, pp. 1–30

    Google Scholar 

  • Hausladen A, Alscher RG (1994a) Purification and characterization of glutathione reductase isozymes specific for the state of cold hardiness of red spruce. Plant Physiol 105:205–13

    PubMed  CrossRef  CAS  Google Scholar 

  • Hausladen A, Alscher RG (1994b) Cold-hardiness-specific glutathione reductase isozymes in red spruce. Thermal dependence of kinetic parameters and possible regulatory mechanisms. Plant Physiol 105:215–23

    PubMed  CrossRef  CAS  Google Scholar 

  • Herbinger K, Tausz M, Wonisch A, Soja G, Sorger A, Grill D (2002) Complex interactive effects of drought and ozone stress on the antioxidant defense systems of two wheat cultivars. Plant Physiol Biochem 40:691–9

    CrossRef  CAS  Google Scholar 

  • Hernandez JA, Corpas FJ, Gomez M, Del Rio LA, Sevilla F (1993) Salt-induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria. Physiol Plant 89:103–10

    CrossRef  CAS  Google Scholar 

  • Hernandez JA, Olmos E, Corpas FJ, Sevilla F, del Rio LA (1995) Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci 105:151–67

    CrossRef  CAS  Google Scholar 

  • Hernandez JA, Jimenez A, Mullineaux PM, Sevilla F (2000) Tolerance of pea (Pisum sativum L.) to long term salt stress is associated with induction of antioxidant defenses. Plant Cell Environ 23:853–62

    CrossRef  CAS  Google Scholar 

  • Hodges DM, Andrews CJ, Johnson DA, Haniton RI (1996) Antioxidant compound responses to chilling stress in differentially sensitive inbred maize lines. Physiol Plant 98:685–92

    CrossRef  CAS  Google Scholar 

  • Hodges DM, Andrews CJ, Johnson DA, Hamilton RI (1997a) Antioxidant enzyme responses to chilling stress in differentially sensitive inbred maize lines. J Exp Bot 48:1105–13

    CrossRef  CAS  Google Scholar 

  • Hodges DM, Andrews CJ, Johnson DA, Hamilton RI (1997b) Antioxidant enzyme and compound responses to chilling stress and their combining abilities in differentially sensitive maize hybrids. Crop Sci 37:857–63

    CAS  CrossRef  Google Scholar 

  • Hodgson RAJ, Raison JK (1991) Superoxide production by thylakoids during chilling and its implication the susceptibility of plants to chilling induced photoinhibition. Planta 183:222–8

    CrossRef  CAS  Google Scholar 

  • Huang M, Guo Z (2005) Responses of antioxidative system to chilling stress in two rice cultivars differing in sensitivity. Biol Plant 49:81–4

    CrossRef  CAS  Google Scholar 

  • Huang C, He W, Guo J, Chang X, Su P, Zhang L (2005) Increased sensitivity to salt stress in an ascorbate-deficient Arabidopsis mutant J Exp Bot 56:3041–9

    PubMed  CrossRef  CAS  Google Scholar 

  • Hung KT, Kao CH (2003) Nitric oxide counteracts the senescence of rice leaves induced by abscisic acid. J Plant Physiol 160:871–9

    PubMed  CrossRef  CAS  Google Scholar 

  • Ida S, Morita Y (1971) Studies on respiratory enzymes in rice kernel: enzymatic properties and physical and chemical characterization of glutathione reductase from rice embryos. Agric Biol Chem 35:1550–7

    CAS  Google Scholar 

  • Innocenti G, Pucciariello C, Gleuher ML, Hopkins J, Stefano MD, Delledonne M ú Puppo A, Baudouin E, Frendo P (2006) Glutathione synthesis is regulated by nitric oxide in Medicago truncatula roots. Planta doi 10.1007/s00425–006-0461–3 online

    Google Scholar 

  • Jiang F, Hellman U, Sroga GE, Bergman B, Mannervik B (1995) Cloning, sequencing, and regulation of the glutathione reductase gene from the cyanobacterium Anabaena PCC 7120. J Biol Chem 270:22882–9

    PubMed  CrossRef  CAS  Google Scholar 

  • Jiang M, Zhang J (2001) Effect of abscisic acid on active oxygen species, antioxidative defense system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol 42:1265–73

    PubMed  CrossRef  CAS  Google Scholar 

  • Jiang M, Zhang J (2002) Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot 53:2401–10

    PubMed  CrossRef  CAS  Google Scholar 

  • Jiang M, Zhang J (2003) Cross-talk between calcium and reactive oxygen species originated from NADPH oxidase in abscisic acid-induced antioxidant defense in leaves of maize seedlings. Plant Cell Environ 26:929–39

    PubMed  CrossRef  CAS  Google Scholar 

  • Jimenez A, Hernandez J, del Rio L, Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:275–84

    PubMed  CAS  Google Scholar 

  • Jimenez A, Hernandez JA, Pastori G, del Rio LA, Sevilla F (1998) Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol 118:1327–35

    PubMed  CrossRef  CAS  Google Scholar 

  • Kalt-Torres W, Burke JJ, Anderson JM (1984) Chloroplast glutathione reductase: purification and properties. Physiol Plant 61:271–8

    CrossRef  CAS  Google Scholar 

  • Kaminaka H, Morita S, Nakajima M, Masumura T, Tanaka K (1998) Gene cloning and expression of cytosolic glutathione reductase in rice (Oryza sativa L.). Plant Cell Physiol 39:1269–80

    PubMed  CAS  Google Scholar 

  • Kangasjarvi J, Talvinen J, Utriainen M, Karjalainen R (1994) Plant defense systems induced by ozone. Plant Cell Environ 17:783–94

    CrossRef  CAS  Google Scholar 

  • Kocsy G, von Ballmoons P, Suter M, Ruegsegger A, Galli U, Szalai G, Galiba G, Brunold C (2000) Inhibition of glutathione synthesis reduces chilling tolerance in maize. Planta 211:528–36

    PubMed  CrossRef  CAS  Google Scholar 

  • Kocsy G, von Ballmoons P, Ruegsegger A, Szalai G, Galiba G, Brunold C (2001) Increasing the glutathione content in a chilling-sensitive maize genotype using safeners increased protection against chilling-induced injury. Plant Physiol 127:1147–56

    PubMed  CrossRef  CAS  Google Scholar 

  • Kopriva S, Koprivova A (2005) Sulfate assimilation and glutathione synthesis in C4 plants. Photosynth Res 86:363–72

    PubMed  CrossRef  CAS  Google Scholar 

  • Kornyeyev D, Logan BA, Payton P, Allen RD, Holaday AS (2001) Enhanced photochemical light utilization and decreased chilling induced photoinhibition of photosystem II in cotton over expressing genes encoding chloroplast targeted antioxidant enzymes. Physiol Plant 113:323–31

    PubMed  CrossRef  CAS  Google Scholar 

  • Kornyeyev D, Logan BA, Payton P, Allen RD, Holaday AS (2003) Elevated chloroplast glutathione reductase activities decrease chilling induced photoinhibition by increasing rates of photochemistry, but not thermal energy dissipation in transgenic cotton. Func Plant Bio 30:101–10

    CrossRef  CAS  Google Scholar 

  • Kotchoni OS, Gachomo EW (2006) The reactive oxygen species network pathways: an essential prerequisite for perception of pathogen attack and the acquired disease resistance in plants. J Biosci 31:389–404

    PubMed  CrossRef  CAS  Google Scholar 

  • Kouril R, Lazar D, Lee H, Jo J, Naus J (2003) Moderately elevated temperature eliminates resistance of rice plants with enhanced expression of glutathione reductase to intensive photooxidative stress. Photosynthetica 41:571–8

    CrossRef  CAS  Google Scholar 

  • Kraner I (2002) Glutathione status correlates with different degrees of desiccation tolerance in three lichens. New Phytol 154:451–60

    CrossRef  Google Scholar 

  • Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–41

    PubMed  CrossRef  CAS  Google Scholar 

  • Kubo A, Sano T, Saji H, Tanaka K, Kondo N, Tanaka K (1993) Primary structure and properties of glutathione reductase from Arabidopsis thaliana. Plant Cell Physiol 34:1259–66

    CAS  Google Scholar 

  • Kubo A, Saji H, Tanaka K, Konda N (1995) Expression of Arabidopsis cytosolic peroxidase gene in response to ozone or sulphur dioxide. Plant Mol Biol 29:479–89

    PubMed  CrossRef  CAS  Google Scholar 

  • Kuk YI, Shin JS, Burgos NR, Hwang TE, Han O, Cho BH, Jung S, Guh JO (2003) Antioxidative enzymes offer protection from chilling damage in rice plants. Crop Sci 43:2109–17

    CAS  CrossRef  Google Scholar 

  • Kukreja S, Nandwal AS, Kumar N, Sharma SK, Sharma SK, Unvi V, Sharma PK (2005) Plant water status, H2O2 scavenging enzymes, ethylene evolution and membrane integrity of Cicer arietinum roots as affected by salinity. Biol Plant 49:305–8

    CrossRef  CAS  Google Scholar 

  • Kumar RG, Dubey RS (1999) Glutamine synthetase isoforms from rice seedlings: Effects of stress on enzyme activity and the protective roles of osmolytes. J Plant Physiol 155:118–21

    CAS  Google Scholar 

  • Kumar S, Singla-Pareek, Reddy MK, Sopory SK (2003) Glutathione: biosynthesis, homeostasis and its role in abiotic stresses. J Plant Biol 30:179–87

    Google Scholar 

  • Kunert KJ, Foyer CH (1993) Thiol/disulphide exchange in plants In: De Kok LJ, Stulen I, Rennenberg H, Brunhold C and Rausen W (eds): Sulfur nutrition and assimilation in higher plants. Regulatory Agricultural and environmental Aspects, SPB Acedemics, The Hague, pp. 139–51

    Google Scholar 

  • Kuzniak E, Sklodowska M (1999) The effect of Botrytis cinerea infection on ascorbate–glutathione cycle in tomato leaves. Plant Sci 148:69–76

    CrossRef  CAS  Google Scholar 

  • Kuzniak E, Sklodowska M (2001) Ascorbate, glutathione and related enzymes in chloroplasts of tomato leaves infected by Botrytis cinerea. Plant Sci 160:723–31

    PubMed  CrossRef  CAS  Google Scholar 

  • Kuzniak E, Sklodowska M. (2004) The effect of Botrytis cinerea infection on the antioxidant profile of mitochondria from tomato leaves. J Exp Bot 397:605–12

    CrossRef  Google Scholar 

  • Kuzniak E, Sklodowska M (2005) Fungal pathogen-induced changes in the antioxidant systems of leaf peroxisomes from infected tomato plants. Planta 222:192–200

    PubMed  CrossRef  CAS  Google Scholar 

  • Lascano HR, Gomez LD, Casano LM, Trippi VS (1998) Changes in glutathione reductase activity and protein content in wheat leaves and chloroplasts exposed to photooxidative stress. Plant Physiol Biochem 36:321–9

    CrossRef  CAS  Google Scholar 

  • Lascano HR, Gomez LD, Casano LM, Trippi VS (1999) Wheat chloroplastic glutathione reductase activity is regulated by the combined effect of pH, NADPH and GSSG. Plant Cell Physiol 40:683–90

    CAS  Google Scholar 

  • Lascano HR, Casano LM, Melchiorre MN, Trippi VS (2001) Biochemical and molecular characterisation of wheat chloroplastic glutathione reductase. Biol Plant 44:509–16

    CrossRef  CAS  Google Scholar 

  • Lee SM, Leustek T (1999) The effect of cadmium on sulphate assimilation enzymes in Brassica juncea. Plant Sci 141:201–7

    CrossRef  CAS  Google Scholar 

  • Lee H, Jo J, Son D (1998) Molecular cloning and characterization of the gene encoding glutathione reductase in Brassica campestris. Biochim Biophys Acta 1395:309–14

    PubMed  CAS  Google Scholar 

  • Lee H, Won SH, Lee BH, Park HD, Chung WI, Jo J (2002) Genomic cloning and characterization of glutathione reductase gene from Brassica campestris var. Pekinensis. Mol Cells 13:245–51

    PubMed  CAS  Google Scholar 

  • Lee YP, Kim SH, Bang JW, Lee HS, Kwak SS, Kwon SY (2007) Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts: genetic transformation and hybridization Plant cell Rep 26:591–8

    PubMed  CrossRef  CAS  Google Scholar 

  • Lederer B, Boger P (2003) Antioxidative responses of tobacco expressing a bacterial glutathione reductase. Z Naturforsch 58:843–9

    CAS  Google Scholar 

  • Leegood RC (1985) The intercellular compartmentation of metabolites in leaves of Zea mays L. Planta 164:163–71

    CrossRef  CAS  Google Scholar 

  • Libreros-Minotta CA, Pardo JP, Mendoza-Hernandez G, Rendon JL (1992) Purification and characterization of glutathione reductase from Rhodospirillum rubrum. Arch Biochem Biophys 298:247–53

    PubMed  CrossRef  CAS  Google Scholar 

  • Lin JN, Kao CH (2000a) Involvement of lipid peroxidation in water stress promoted senescence of detached rice leaves. Biol Plant 43:141–5

    CrossRef  CAS  Google Scholar 

  • Lin CC, Kao CH (2000b) Effect of NaCl stress on H2O2 metabolism in rice leaves. Plant Growth Regul 30:151–5

    CrossRef  CAS  Google Scholar 

  • Lin DI, Lur HS, Chu C (2001) Effects of abscisic acid on ozone tolerance of rice (Oryza sativa L.) seedlings. Plant Growth Regul 35:295–300

    CrossRef  CAS  Google Scholar 

  • Logan BA, Grace SC, Adams III WW, Adams DB (1998) Seasonal differences in xanthophyll cycle charecteristics and antioxidants in Mahonia repens growing in different light environments. Oecologia 116:9–17

    Google Scholar 

  • Logan BA, Monteiro G, Kornyeyev D, Payton P, Allen RD, Holaday AS (2003) Transgenic overproduction of glutathione reductase does not protect cotton, Gossypium hirsutum (Malvaceae), from photoinhibition during growth under chilling conditions. Am J Bot 90:1400–3

    CrossRef  Google Scholar 

  • Lopez-Barea J, Lee CY (1979) Mouse liver glutathione reductase. Purification, kinetics and regulation. Eur J Biochem 98:487–99

    PubMed  CrossRef  CAS  Google Scholar 

  • Madamanchi NR, Anderson JV, Alscher RG, Cramer CL, Hess JL (1992) Purification of multiple forms of glutathione reductase from Pea (Pisum sativum L.) seedlings and enzyme levels in ozone fumigated pea leaves. Plant Physiol 100:138–45

    PubMed  CrossRef  CAS  Google Scholar 

  • Mahan JR, Burke JJ (1987) Purification and characterization of glutathione reductase from corn mesophyll chloroplasts. Physiol Plant 71:352–8

    CrossRef  CAS  Google Scholar 

  • Mapson LW, Goddard DR (1951) Reduction of glutathione by coenzyme II. Nature 167:975–7

    PubMed  CrossRef  CAS  Google Scholar 

  • Mapson LW, Isherwood (1963) Glutathione reductase from germinated peas. Biochem J 86:173–91

    PubMed  CAS  Google Scholar 

  • Marrs KA (1996) The functions and regulation of glutathione S transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47:127–58

    PubMed  CrossRef  CAS  Google Scholar 

  • Massey V, Williams CH (1965) On the reaction mechanism of yeast glutathione reductase. J Biol Chem 240:4470–80

    PubMed  CAS  Google Scholar 

  • Mata AM, Pinto MC, Lopez-Barea J (1984) Purification by affinity chromatography of glutathione reductase (EC 1.6.4.2) from Escherichia coli and characterization of such enzyme. Z Naturforsch 39:908–15

    CAS  Google Scholar 

  • Maughan S, Foyer CH (2006) Engineering and genetic approaches to modulating the glutathione network in plants. Physiol Plant 126:382–97

    CrossRef  CAS  Google Scholar 

  • May MJ, Vernoux T, Leaver C, Van Montagu M, Inze D (1998) Glutathione homeostasis in plants: implications for environmental sensing and plant development. J Exp Bot 49:649–67

    CrossRef  CAS  Google Scholar 

  • Mayer AJ, Hell R (2005) Glutathione homeostasis and redox-regulation by sulfhydryl groups. Photosynth Res 86:435–57

    CrossRef  CAS  Google Scholar 

  • Mazhoudi S, Chaoui A, Ghorsab MW, Ferjani EE (1997) Response of antioxidant enzymes to excess copper in tomato (Lycopersicon esculentum Mill.). Plant Sci 127:129–37

    CrossRef  CAS  Google Scholar 

  • McLaughlin SB, Taylor GE (1981) Relative humidity: important modifier to pollutant uptake by plants. Science 211:167–9

    PubMed  CrossRef  CAS  Google Scholar 

  • Mehler AH (1951) Studies on reactions of illuminated chloroplasts. I. Mechanisms of the reduction of oxygen and other Hill reagents. Arch Biochem Biophys 33:65–77

    CrossRef  CAS  Google Scholar 

  • Mehlhorn H, Cottam DA, Lucas PW, Wellburn AR (1987) Induction of ascorbate peroxidase and glutathione reductase activities by interactions of mixtures air pollutants. Free Radical Res Commun 3:193–7

    CrossRef  CAS  Google Scholar 

  • Meister A (1988) Glutathione metabolism and its selective modification. J Biol Chem 263:17205–8

    PubMed  CAS  Google Scholar 

  • Meldrum NU, Tarr HLA (1935) The reduction of glutathione by the Warburg-Christian system. Biochem J 29:108–15

    PubMed  CAS  Google Scholar 

  • Meyer AJ, Fricker MD (2002) Control of demand-driven biosynthesis of glutathione in green Arabidopsis suspension culture cells. Plant Physiol 130:1927–37

    PubMed  CrossRef  CAS  Google Scholar 

  • Mittl PRE, Schulz GE (1994) Structure of glutathione reductase from Escherichia coli at 1.86 Å resolution: comparison with the enzyme from human erythrocytes. Protein Sci 3:799–809

    PubMed  CrossRef  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants, and stress tolerance. Trends Plant Sci 7:405–10

    PubMed  CrossRef  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) The reactive oxygen gene network of plants. Trends Plant Sci 9:490–8

    PubMed  CrossRef  CAS  Google Scholar 

  • Mittova V, Tal M, Volokita M, Guy M (2003) Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant Cell Environ 26:845–56

    PubMed  CrossRef  CAS  Google Scholar 

  • Molina A, Bueno P, Marín MC, Rosales MPR, Belver A, Venema K, Donaire JP (2002) Involvement of endogenous salicylic acid content, lipoxygenase and antioxidant enzyme activities in the response of tomato cell suspension cultures to NaCl. New Phytol 156:409–15

    CrossRef  CAS  Google Scholar 

  • Mullineaux PM, Creissen GP (1997) Glutathione reductase: regulation and role in oxidative stress. In: Scandalios JG (ed) Oxidative stress and the molecular biology of antioxidants, Cold Spring Harbor Laboratory Press, NY, pp. 667–713

    Google Scholar 

  • Mullineaux PM, Rausch T (2005) Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression. Photosynth Res 86:459–74

    PubMed  CrossRef  CAS  Google Scholar 

  • Mullineaux PM, Enard C, Hylton C, Hellens R, Creissen GP (1996) Characterization of a glutathione reductase gene and its genetic locus from pea (Pisum sativum L.). Planta 200:186–94

    PubMed  CrossRef  CAS  Google Scholar 

  • Nathawat NS, Nair JS, Kumawat SM, Yadava NS, Singh G, Ramaswamy NK, Sahu MP, D’Souza SF (2007) Effect of seed soaking with thiols on the antioxidant enzymes and photosystem activities in wheat subjected to water stress. Biol Plant 51:93–7

    CrossRef  CAS  Google Scholar 

  • Nocito FF, Lancilli C, Crema B, Fourcroy P, Davidian JC, Sacchi GA (2006) Heavy metal stress and sulfate uptake in maize roots. Plant Physiol 141:1138–48

    PubMed  CrossRef  CAS  Google Scholar 

  • Noctor G, Arisi A, Jouanin L, Kunert K, Rennenberg H, Foyer C (1998) Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Exp Bot 49:623–47

    CrossRef  CAS  Google Scholar 

  • Noctor G, Gomez L, Vanacker H, Foyer CH (2002) Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J Exp Bot 53:1283–1304

    PubMed  CrossRef  CAS  Google Scholar 

  • Ogawa Ki Hatano-Iwasaki A, Yanagida M, Iwabuchi M (2004) Level of glutathione is regulated by ATP-dependent ligation of glutamate and cysteine through photosynthesis in Arabidopsis thaliana: mechanism of strong interaction of light intensity with flowering. Plant Cell Physiol 45:1–8

    CrossRef  Google Scholar 

  • Oquist G, Huner NPA (1993) Cold-hardening induced resistance to photoinhibition of photosynthesis in winter rye is dependent upon an increased capacity for photosynthesis. Planta 189:150–6

    CrossRef  Google Scholar 

  • Panda SK, Patra HK (1997) Physiology of chromium toxicity: a review. Plant Physiol Biochem 24:10–17

    Google Scholar 

  • Panda SK, Patra HK (1998) Alteration of nitrate reductase activity by chromium ions in excised wheat leaves. Indian J Agr Biochem 11:56–7

    CAS  Google Scholar 

  • Panda SK, Patra HK (2000) Does chromium (III) produce oxidative damage in excised wheat leaves? J Plant Biol 27:105–10

    Google Scholar 

  • Parida BK, Chhibba IM, Nayyar VK (2003) Influence of nickel contaminated soils on fenugreek (Trigonella corniculata L.) growth and mineral composition. Sci Hort 98:113–19

    CrossRef  CAS  Google Scholar 

  • Pastori GM, Trippi VS (1992) Oxidative stress induces high rate of glutathione reductase synthesis in a drought resistant maize strain. Plant Cell Physiol 33:957–61

    CAS  Google Scholar 

  • Payton P, Webb R, Kornyeyev D, Allen R, Holaday AS (2001) Protecting cotton photosynthesis during moderate chilling at high light intensity by increasing chloroplastic antioxidant enzyme activity. J Exp Bot 52:2345–54

    PubMed  CrossRef  CAS  Google Scholar 

  • Pell EJ, Dann MS (1991) Multiple stress-induced foliar senescence and implications for whole-plant longevity. In: Monney HA, Winner WE and Pell EJ (eds): Responses of plants to multiple stresses, Academic Press, San Diego, pp. 389–403

    Google Scholar 

  • Pereira GJG, Molina SMG, Lea PJ, Azevedo RA (2002) Activity of antioxidant enzymes in response to cadmium in Crotalaria juncea. Plant Soil 239:123–32

    CrossRef  CAS  Google Scholar 

  • Perry ACF, Bhriain NN, Brown NL, Rouch DA (1991) Molecular characterization of the gor gene encoding glutathione reductase from Pseudomonas aeruginosa: determinants of substrate specificity among pyridine nucleotide–disulphide oxidoreductases. Mol Microbiol 5:163–71

    PubMed  CrossRef  CAS  Google Scholar 

  • Peeters N, Small I (2001) Dual targeting to mitochondria and chloroplasts. Biochim Biophys Acta 1541:54–63

    PubMed  CrossRef  CAS  Google Scholar 

  • Peuke AD, Rennenberg H (2005a) Phytoremediation with transgenic trees. Z Naturforsch 60:199–207

    CAS  Google Scholar 

  • Peuke AD, Rennenberg H (2005b) Phytoremediation: molecular biology, requirements for application, environmental protection, public attention and feasibility. EMBO Reports 6:497–501

    PubMed  CrossRef  CAS  Google Scholar 

  • Pilon-Smith E, Zhu YL, Sears T, Terry N (2000) Over-expression of glutathione reductase in Brassica juncea: effects on cadmium accumulation and tolerance. Physiol Plant 110:455–60

    CrossRef  Google Scholar 

  • Pinto MC, Mata AM, Lopez-Barea (1985) The redox interconversion mechanism of Saccharomyces cerevisiae glutathione reductase. Eur J Biochem 15:275–81

    CrossRef  Google Scholar 

  • Plochi M, Lyons T, Ollerenshaw J, Barnes J (2000) Simulating ozone detoxification in the leaf apoplast through the direct reaction with ascorbate. Planta 210:454–67

    CrossRef  Google Scholar 

  • Polle A (1998) Photochemical oxidants: uptake and detoxification mechanisms. In: De Kok LJ and Stulen I (eds): Responses of plant metabolism to air pollution and global change. Backhuys Publishers, Leiden, pp. 95–116

    Google Scholar 

  • Poschenrieder C, Vazquez MD, Bonet A, Barcelo J (1991) Chromium III iron interaction in iron sufficient and iron deficient bean plants. II Ultra structural aspects. J Plant Nutr 14:415–28

    CrossRef  CAS  Google Scholar 

  • Potters G, Horemans N, Bellone S, Caubergs RJ, Trost P, Guisez Y, Asard H (2004) Dehydroascorbate influences the plant cell cycle through a glutathione-independent reduction mechanism. Plant Physiol 134:1479–87

    PubMed  CrossRef  CAS  Google Scholar 

  • Prasad KVSK, Pardhasaradhi P, Sharmila P (1999) Concerted action of antioxidant enzyme and curtailed growth under zinc toxicity in Brassica juncea. Environ Exp Bot 42:1–10

    CrossRef  CAS  Google Scholar 

  • Rao MV (1992) Cellular detoxifying mechanisms determine age dependent injury in tropical plants exposed to SO2. J Plant Physiol 140:733–40

    CAS  Google Scholar 

  • Rao MV, Hale B, Ormrod DP (1995) Amelioration of ozone induced oxidative damage in wheat plants grown under high carbon dioxide. Role of antioxidant enzymes. Plant Physiol 109:421–32

    PubMed  CAS  Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP (1996) Ultraviolet-B and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol 110:125–36

    PubMed  CrossRef  CAS  Google Scholar 

  • Rauser WE (1990) Phytochelatins. Annu Rev Biochem 59:61–86

    PubMed  CrossRef  CAS  Google Scholar 

  • Rea PA (2006) Phytochelatin synthase, papain’s cousin, in stereo. Proc Natl Acad Sci USA 103:507–8

    PubMed  CrossRef  CAS  Google Scholar 

  • Rea PA, Vatamaniuk OK, Rigden DJ (2004) Weeds, worms, and more. Papain’s long-lost cousin, phytochelatin synthase. Plant Physiol 136:2463–74

    PubMed  CrossRef  CAS  Google Scholar 

  • Reddy AR, Raghavendra AS (2006) Photooxidative stress. In: KV Madhava Rao, Raghavendra AS, Reddy KJ (eds): Physiology and molecular biology of stress tolerance in plants, Springer, The Netherlands, pp. 157–86

    CrossRef  Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    CrossRef  CAS  Google Scholar 

  • Rendon JL, Calcagno M, Mendoza-Hernandez G, Ondarza RN (1986) Purification, properties, and oligomeric structure of glutathione reductase from the cyanobacterium Spirulina maxima. Arch Biochem Biophys 248:215–23

    PubMed  CrossRef  CAS  Google Scholar 

  • Rennenberg H, Brunold C (1994) Significance of glutathione metabolism in plants under stress. Prog Bot 55:144–56

    Google Scholar 

  • Rennenberg H, Schmitz K, Bergmann L (1979) Long distance transport of sulphur in Nicotiana tabacum. Planta 147:57–62

    CrossRef  CAS  Google Scholar 

  • Rich W, Wagoner PE, Tomlinson H (1970) Ozone uptake by bean leaves. Science 169:19–80

    CrossRef  Google Scholar 

  • Rizhsky L, Davletova S, Liang H, Mittler R (2004) The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J Biol Chem 279:11736–43

    PubMed  CrossRef  CAS  Google Scholar 

  • Romero-Puertas MC, Corpas FJ, Sandalio LM, Leterrier M, Rodriguez-Serrano M, del Rio LA, Palma JM (2006) Glutathione reductase from pea leaves: response to abiotic stress and characterization of the peroxisomal isozyme. New Phytol 170:43–52

    PubMed  CrossRef  CAS  Google Scholar 

  • Rouhier N, Couturier J, Jacquot JP (2006) Genome-wide analysis of plant glutaredoxin systems. J Exp Bot 57:1685–96

    PubMed  CrossRef  CAS  Google Scholar 

  • Sairam PK, Saxena DC (2000) Oxidative stress and antioxidants in wheat genotypes: possible mechanism of water stress tolerance. J Agron Crop Sci 184:55–61

    CrossRef  CAS  Google Scholar 

  • Sairam RK, Shukla DS, Saxena DC (1997/98) Stress-induced injury and antioxidant enzymes in relation to drought tolerance in wheat genotypes. Biol Plant 40:357–64

    CrossRef  CAS  Google Scholar 

  • Sairam RK, Srivastava GC, Agarwal S, Meena RC (2005) Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biol Plant 49:85–91

    CrossRef  CAS  Google Scholar 

  • Salt DE, Blaylock M, Nanda Kumar PBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnol 13:468–74

    CrossRef  CAS  Google Scholar 

  • Schaedle M, Bassham JA (1977) Chloroplast glutathione reductase. Plant Physiol 59:1011–12

    PubMed  CrossRef  CAS  Google Scholar 

  • Schoner S, Krause GH (1990) Protective systems against active oxygen species in spinach: response to cold acclimation in excess light. Planta 180:383–9

    CrossRef  Google Scholar 

  • Schulz GE, Schirmer RH, Sachsenheimer W, Pai EF (1978) The structure of the flavoenzyme glutathione reductase. Nature 273:120–4

    PubMed  CrossRef  CAS  Google Scholar 

  • Scrutton NS, Berry A, Perham RN (1990) Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature 343:38–43

    PubMed  CrossRef  CAS  Google Scholar 

  • Selote DS, Chopra RK (2004) Drought-induced spikelet sterility is associated with an inefficient antioxidant defense in rice panicles. Physiol Plant121:462–71

    CrossRef  CAS  Google Scholar 

  • Selote DS, Chopra RK (2006) Drought acclimation confers oxidative stress tolerance by inducing co-ordinated antioxidant defense at cellular and subcellular level in leaves of wheat seedlings. Physiol Plant 127:494–506

    CrossRef  CAS  Google Scholar 

  • Serrano A, Liobell A (1993) Occurrence of two isoforms of glutathione reductase in the green alga Chlamydomonas reinhardtii. Planta 190:199–205

    CrossRef  CAS  Google Scholar 

  • Serrano A, Rivas J, Losada M (1984) Purification and properties of glutathione reductase from the cyanobacterium Anabaena sp. strain 7119. J Bacteriol 158:317–24

    PubMed  CAS  Google Scholar 

  • Shalata A, Mittova V, Volokita M, Guy M, Tal M (2001) Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidative system. Physiol Plant 112:487–94

    PubMed  CrossRef  CAS  Google Scholar 

  • Sharma P, Dubey RS (2005) Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul 46:209–21

    CrossRef  CAS  Google Scholar 

  • Shulaev V, Oliver DJ (2006) Metabolic and Proteomic Markers for Oxidative Stress: New tools for reactive oxygen species research. Plant Physiol 141:367–72

    PubMed  CrossRef  CAS  Google Scholar 

  • Skorzynska-Polit E, Drazkiewicz, Krupa Z (2003/4) The activity of the antioxidative system in cadmium-treated Arabidopsis thaliana. Biol Plant 47:71–8

    CrossRef  CAS  Google Scholar 

  • Slooten L, Montagu MV, Inze D (1998) Manipulation of oxidative stress tolerance in transgenic plants In: Lindsey K (ed): Transgenic plant research, Harwood Academic Publishers, Australia, pp. 241–62

    Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    CrossRef  CAS  Google Scholar 

  • Smirnoff N, Colombe SV (1988) Drought influences the activity of enzymes of the chloroplast hydrogen peroxide scavenging system. J Exp Bot 39:1097–1108

    CrossRef  CAS  Google Scholar 

  • Smith IK, Vierheller TL, Thorne CA (1989) Properties and functions of glutathione reductase in plants. Physiol Plant 77:449–56

    CrossRef  CAS  Google Scholar 

  • Somashekaraiah BV, Padmaja K, Prasad ARK (1992) Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): involvement of lipid peroxides in chlorophyll degradation. Physiol Plant 85:85–9

    CrossRef  CAS  Google Scholar 

  • Sreenivasulu N, Grimma B, Wobusa U, Weschkea W (2000) Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of foxtail millet (Setaria italica). Physiol Plant109:435–42

    CrossRef  CAS  Google Scholar 

  • Srivalli B, Sharma G, Chopra RK (2003) Antioxidative defense system in an upland rice cultivar subjected to increasing intensity of water stress followed by recovery. Physiol Plant 119:503–12

    CrossRef  CAS  Google Scholar 

  • Steffens JC (1990) The heavy metal-binding peptides of plants. Ann Rev Plant Physiol Plant Mol Biol 41:553–75

    CAS  Google Scholar 

  • Stevens R, Creissen GP, Mullineaux PM (1997) Cloning and characterization of a cytosolic glutathione reductase cDNA from pea (Pisum sativum L.) and its expression in response to stress. Plant Mol Biol 35:641–54

    PubMed  CrossRef  CAS  Google Scholar 

  • Stevens R, Creissen GP, Mullineaux PM (2000) Characterization of pea cytosolic glutathione reductase expressed in transgenic tobacco. Planta 211:537–45

    PubMed  CrossRef  CAS  Google Scholar 

  • Stroinski A, Kubis J, Zielezinska M (1999) Effect of cadmium on glutathione reductase in potato tubers. Acta Physiol Plant 21:201–7

    CrossRef  CAS  Google Scholar 

  • Strohm M, Eiblmeier M, Langebartels C, Jouanin L, Polle A, Sandermann H, Rennenberg H (1999) Responses of transgenic poplar (Populus tremula x P.alba) overexpressing glutathione reductase to acute ozone stress: visible injury and leaf gas exchange. J Exp Bot 50:365–74

    CrossRef  CAS  Google Scholar 

  • Strohm M, Eiblmeier M, Langebartels C, Jouanin L, Polle A, Sandermann H, Rennenberg H (2002) Responses of antioxidative systems to acute ozone stress in transgenic poplar (Populus tremula x P.alba) over-expressing glutathione synthetase or glutathione reductase. Trees 16:262–73

    CrossRef  CAS  Google Scholar 

  • Sumithra K, Jutur PP, Dalton CB, Reddy AR (2006) Salinity-induced changes in two cultivars of Vigna radiata: responses of antioxidative and proline metabolism. Plant Growth Regul 50:11–22

    CrossRef  CAS  Google Scholar 

  • Takeda T, Ishikawa T, Shigeoka S, Hirayama O, Mitsunaga T (1993) Purification and characterization of glutathione reductase from Chlamydamaonas reinhardtii. J Gen Microbiol 139:2233–8

    CAS  Google Scholar 

  • Tanaka K, Saji H, Kondo N (1988) Immunological properties of spinach glutathione reductase and inductive biosynthesis of the enzyme with ozone. Plant Cell Physiol 29:637–42

    CAS  Google Scholar 

  • Tang X, Webb MA (1994) Soyabean root nodule cDNA encoding glutathione reductase. Plant Physiol 104:1081–2

    PubMed  CrossRef  CAS  Google Scholar 

  • Tausz M, Sircelj H, Grill D (2004) The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? J Exp Bot 55:1955–62

    PubMed  CrossRef  CAS  Google Scholar 

  • Tewari RK, Parma PK, Sharma N (2006) Antioxidant responses to enhanced generation of superoxide anion radical and hydrogen peroxide in the copper-stressed mulberry plants. Planta 223:1145–53

    PubMed  CrossRef  CAS  Google Scholar 

  • Tsai YC, Kao CH (2004) The involvement of hydrogen peroxide in abscisic acid-induced activities of ascorbate peroxidase and glutathione reductase in rice roots. Plant Growth Regul 43:207–12

    CrossRef  CAS  Google Scholar 

  • Tsai YC, Hong CY, Liu LF, Kao CH (2005) Expression of ascorbate peroxidaes and glutathione reductase in roots of rice seedlings in respons to NaCl and H2O2. J Plant Physiol 162:291–9

    PubMed  CrossRef  CAS  Google Scholar 

  • Tsang EWT, Bowler C, Herouart D, van Camp W, Villarroel R, Genetello C, van Montagu M, Inze D (1991) Differential regulation of superoxide dismutases in plants exposed to environmental stress. Plant Cell 3:783–92

    PubMed  CrossRef  CAS  Google Scholar 

  • Tyystjarvi E, Riikonen M, Arisi ACM, Kettunen R, Jouanin L, Foyer CH (1999) Photoinhibition of photosysem II in tobacco plants overexpressing glutathione reductase and poplars overexpressing superoxide dismtase. Physiol Plant 105:409–16

    CrossRef  CAS  Google Scholar 

  • Vaidyanathan H, Sivakumar P, Chakrabarty R, Thomas G (2003) Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.) - differential responses in salt tolerant and sensitive varieties. Plant Sci 165:1411–18

    CrossRef  CAS  Google Scholar 

  • Vanacker H, Carver TLW, Foyer CH (1998) Pathogen-induced changes in the antioxidant status of the apoplast in barley leaves. Plant Physiol 117:1103–14

    PubMed  CrossRef  CAS  Google Scholar 

  • Van Rensburg L, Kruger GHJ (1994) Evaluation of components of oxidative stress metabolism for use in selection of drought tolerant cultivars of Nicotiana tobacum L. J Plant Physiol 143:730–36

    CAS  Google Scholar 

  • Verma S, Dubey RS (2001) Effect of cadmium on soluble sugars and enzymes of their metabolism in rice. Biol Plant 44:117–23

    CrossRef  CAS  Google Scholar 

  • Vinterhalter B, Vinterhalter D (2005) Nickel hyper accumulation in shoot cultures of Alyssum markgrafii. Biol Plant 49:121–4

    CrossRef  CAS  Google Scholar 

  • Vitoria AP, Lea PJ, Azevedo RA (2001) Antioxidant enzymes responses to cadmium in radish tissues. Phytochemistry 57:701–10

    PubMed  CrossRef  CAS  Google Scholar 

  • Walker MA, McKersie (1993) Role of the ascorbate-glutathione antioxidant system in chilling resistance of tomato. J Plant Physiol 141:234–9

    CAS  Google Scholar 

  • Weckx JEJ, Clijsters HMM (1997) Zn phytotoxicity induces oxidative stress in primary leaves of Phaseolus vulgaris. Plant Physiol Biochem 35:405–10

    CAS  Google Scholar 

  • Willekens H, Van Camp W, Van Montagu M, Inze D, Langerbelts C, Sandermann H (1994) Ozone, sulfur dioxide and UV-B radiation have similar effects on mRNA accumulation of antioxidant genes in Nicotiana plumbaginifolia L. Plant Physiol 106:1007–14

    PubMed  CAS  Google Scholar 

  • Wingate VMP, Lawton MA, Lamb CJ (1988) Glutathione causes a massive and selective induction of plant defense genes. Plant Physiol 87:206–10

    PubMed  CrossRef  CAS  Google Scholar 

  • Wingsle G (1989) Purification and characterization of glutathione reductase from Scots pine needles. Physiol Plant 76:24–30

    CrossRef  CAS  Google Scholar 

  • Wingsle G, Karpinski S. (1996) Differential redox regulation by glutathione of glutathione reductase and CuZn-superoxide dismutase gene expression in Pinus sylvestris L. needles. Planta 198:151–7

    PubMed  CrossRef  CAS  Google Scholar 

  • Wise RR (1995) Chilling-enhanced photooxidation: The production, action, and study of reactive oxygen species produced during chilling in the light. Photosynth Res 45:79–97

    CrossRef  CAS  Google Scholar 

  • Wojtaszek P (1997a) Oxidative burst: an early plant response to pathogen infection. Biochem J 332:681–92

    Google Scholar 

  • Wojtaszek P (1997b) Mechanisms for the generation of reactive oxygen species in plant defense response. Acta Physiol Plant 19:581–9

    CrossRef  CAS  Google Scholar 

  • Woodwin TS, Segel IH (1968) Isolation and characterization of glutathione reductase from Penicillium chrysogenum. Biochem Biophys Acta 164:64–77

    Google Scholar 

  • Xiang C, Werner BL, Christensen EM, Oliver DJ (2001) The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol 126:564–74

    PubMed  CrossRef  CAS  Google Scholar 

  • Young LCT, Conn EE (1956) The reduction and oxidation of glutathione by plant mitochondria. Plant Physiol 31:205–11

    PubMed  CrossRef  CAS  Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants: a review. Gene 179:21–30

    PubMed  CrossRef  CAS  Google Scholar 

  • Zgallai H, Steppe K, Lemeur R (2006) Effects of different levels of water stress on leaf water potential, stomatal resistance, protein and chlorophyll content and certain antioxidative Enzymes in tomato plants. J Integr Plant Biol 48:679–85

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rao, A.S.V.C., Reddy, A.R. (2008). Glutathione Reductase: A Putative Redox Regulatory System in Plant Cells. In: Khan, N.A., Singh, S., Umar, S. (eds) Sulfur Assimilation and Abiotic Stress in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76326-0_6

Download citation