Skip to main content

Performance Requirements and Mechanistic Analysis of Organic Transistor-Based Phosphonate Gas Sensors

  • Chapter
Organic Semiconductors in Sensor Applications

Part of the book series: Materials Science ((SSMATERIALS,volume 107))

  • 2081 Accesses

Organic semiconductor-based transistors are an attractive alternative for vapor sensors, because chemical functional groups that can interact with vapors may be covalently attached to the semiconductors near the channel region where current flows. The attachment of OH groups to a hole-transporting and an electron-transporting molecular semiconductor subunit greatly enhances response to dimethyl methylphosphonate, a polar analyte related to vapors of interest for national security purposes. The response is consistent with models of organic transistor action. Integration of organic transistors into complete sensor systems and performance requirements of these systems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.E. Katz, Chem. Mater. 16, 4748 (2004)

    Article  Google Scholar 

  2. H.E. Katz, C. Kloc, Z. Bao, J. Zaumseil, V. Sundar, J. Mater. Res. 19, 1995 (2004)

    Article  ADS  Google Scholar 

  3. A. Facchetti, J. Letizia, M.H. Yoon, M. Mushrush, H.E. Katz, T.J. Marks, Chem. Mater. 16, 4715 (2004)

    Article  Google Scholar 

  4. A. Facchetti, Mater. Today 10, 28 (2007)

    Article  Google Scholar 

  5. T.W. Kelley, P.F. Baude, C. Gerlach, D.E. Ender, D. Muyres, M.A. Haase, D. Vogel, S.D. Theiss, Chem. Mater. 16, 4413 (2004)

    Article  Google Scholar 

  6. R. Parashkov, E. Becker, T. Riedel, H.-H. Johannes, W. Kowalsky, Proc. The IEEE 93, 1321 (2005)

    Article  Google Scholar 

  7. T. Someya, Y. Kato, T. Sekitani, S. Iba, Y. Noguchi, Y. Murase, H. Kawaguchi, T. Sakurai, Proc. Natl. Acad Sci. USA 102, 12321 (2005)

    Article  ADS  Google Scholar 

  8. G. Guillaud, J. Simon, J.P. Germain, Coord. Chem. Rev. 180, 1433 (1998)

    Article  Google Scholar 

  9. L. Torsi, A. Dodabalapur, N. Cioffi, L. Sabbatini, P.G. Zambonin, Sens. Actuators B-Chem. 77, 7 (2001)

    Article  Google Scholar 

  10. B. Crone, A. Dodabalapur, A. Gelperin, L. Torsi, H.E. Katz, A.J. Lovinger, Z. Bao, Appl. Phys. Lett. 78, 2229 (2001)

    Article  ADS  Google Scholar 

  11. F. Liao, C. Chen, V. Subramanian, Sens. Actuators B-Chem. 107, 849 (2005)

    Article  Google Scholar 

  12. M.C. Tanese, D. Fine, A. Dodabalapur, L. Torsi, Microelectron. J. 37, 837 (2006)

    Article  Google Scholar 

  13. M.C. Tanese, D. Fine, A. Dodabalapur, L. Torsi, Biosens. Bioelectron. 21, 782 (2005)

    Article  Google Scholar 

  14. L. Torsi, A. Dodabalapur, L. Sabbatini, P.G. Zambonin, Sens. Actuators B-Chem. 67, 312 (2000)

    Article  Google Scholar 

  15. D. Halliday, R. Resnick, Physics (Part II) (Wiley, New York, 1962)

    Google Scholar 

  16. C. Kendrick and S. Semancik, J. Vac. Sci. Technol. A 16, 3068 (1998)

    Article  ADS  Google Scholar 

  17. D. Li, E.-J. Borkent, R. Nortrup, H. Moon, H.E. Katz, Z. Bao, Appl. Phys. Lett. 86, 042105 (2005)

    Article  ADS  Google Scholar 

  18. Z.-T. Zhu, J.T. Mason, R. Dieckmann, G.G. Malliaras, Appl. Phys. Lett. 81, 4643 (2002)

    Article  ADS  Google Scholar 

  19. H. Hoshino, M. Yoshida, S. Uemura, T. Kodzasa, N. Takada, T. Kamata, K. Yase, J. Appl. Phys. 95, 5088 (2004)

    Article  ADS  Google Scholar 

  20. G. Horowitz, J. Mater. Res. 19, 1946 (2004)

    Article  ADS  Google Scholar 

  21. G. Horowitz, M.E. Hajlaoui, R. Hajlaoui, J. Appl. Phys. 87, 4456 (2000)

    Article  ADS  Google Scholar 

  22. M.C.J.M. Vissenberg and M. Matters, Phys. Rev. B 57, 12964 (1998)

    Article  ADS  Google Scholar 

  23. N. Tessler, Y. Roichman, Appl. Phys. Lett. 79, 2987 (2001)

    Article  ADS  Google Scholar 

  24. K.P. Pernstich, S. Haas, D. Oberhoff, C. Goldmann, D.J. Gundlach, B. Batlogg, A.N. Rashid, G. Schitter, J. Appl. Phys. 96, 6431 (2004)

    Article  ADS  Google Scholar 

  25. R.J. Chesterfield, J.C. McKeen, C.R. Newman, P.C. Ewbank, D. Filho, J.-L. Bredas, L.L. Miller, K. Mann, C.D. Frisbie, J. Phys. Chem. B 108, 19281 (2004)

    Article  Google Scholar 

  26. Y. Sun, K.Y. Ong, Detection technologies for chemical warfare agents and toxic vapors (CRC Press, Boca Raton, FL, 2005)

    Google Scholar 

  27. W.T. Muse, S. Thomson, C. Crouse, K. Matson, Inhal. Toxicol. 18, 1101 (2006)

    Article  Google Scholar 

  28. A. Salleo, F. Endicott, R.A. Street, Appl. Phys. Lett. 86 (2005)

    Google Scholar 

  29. A. Salleo, R.A. Street, J. Appl. Phys. 94, 471 (2003)

    Article  ADS  Google Scholar 

  30. D. Kawakami, Y. Yasutake, H. Nishizawa, Y. Majima, Jpn. J. Appl. Phys. Part 2-Lett. Exp. Lett. 45, L1127 (2006)

    Article  Google Scholar 

  31. A. Salleo, R.A. Street, Phys. Rev. B 70 (2004)

    Google Scholar 

  32. R.A. Street, A. Salleo, M.L. Chabinyc, Phys. Rev. B 68 (2003)

    Google Scholar 

  33. E.S. Snow, F.K. Perkins, E.J. Houser, S.C. Badescu, T.L. Reinecke, Science 307, 1942 (2005)

    Article  ADS  Google Scholar 

  34. A.A. Tomchenko, G.P. Harmer, B.T. Marquis, Sens. Actuators B-Chem. 108, 41 (2005)

    Article  Google Scholar 

  35. S.V. Patel, T.E. Mlsna, B. Fruhberger, E. Klaassen, S. Cemalovic, D.R. Baselt, Sens. Actuators B-Chem. 96, 541 (2003)

    Article  Google Scholar 

  36. L. Bertilsson, I. Engquist, B. Liedberg, J. Phys. Chem. B 101, 6021 (1997)

    Article  Google Scholar 

  37. L. Bertilsson, K. PotjeKamloth, H.D. Liess, Thin Solid Films 285, 882 (1996)

    Article  Google Scholar 

  38. L. Bertilsson, K. Potje-Kamloth, H.D. Liess, I. Engquist, B. Liedberg, J. Phys. Chem. B 102, 1260 (1998)

    Article  Google Scholar 

  39. L. Bertilsson, K. Potje-Kamloth, H.D. Liess, B. Liedberg, Langmuir 15, 1128 (1999)

    Article  Google Scholar 

  40. H.E. Katz, J. Johnson, A.J. Lovinger, W.J. Li, J. Am. Chem. Soc. 122, 7787 (2000)

    Article  Google Scholar 

  41. H.P. Jia, G.K. Pant, E.K. Gross, R.M. Wallace, B.E. Gnade, Org. Electron. 7, 16 (2006)

    Article  Google Scholar 

  42. L. Torsi, A. Dodabalapur, H.E. Katz, J. Appl. Phys. 78, 1088 (1995)

    Article  ADS  Google Scholar 

  43. G. Horowitz, R. Hajlaoui, R. Bourguiga, and M. Hajlaoui, Syn. Metals 101, 401 (1999)

    Article  Google Scholar 

  44. G. Horowitz, P. Lang, M. Mottaghi, H. Aubin, Adv. Funct. Mater. 14, 1069 (2004)

    Article  Google Scholar 

  45. J. Sworakowski, K. Janus, S. Nespurek, M. Vala, IEEE Trans. Dielectrics And Electr. Insulation 13, 1001 (2006)

    Google Scholar 

  46. G. Horowitz, M.E. Hajlaoui, R. Hajlaoui, J. Appl. Phys. 87, 4456 (2000)

    Article  ADS  Google Scholar 

  47. W.E. Spear and P.G. Le Comber, J. Non-Cryst. Solids 8–10, 727 (1972)

    Article  Google Scholar 

  48. P.G. Lecomber, W.E. Spear, Phys. Rev. Lett. 25, 509 (1970)

    Article  ADS  Google Scholar 

  49. G. Horowitz. M.E. Hajlaoui, Adv. Mater. 12, 1046 (2000)

    Article  Google Scholar 

  50. R. Bourguiga, G. Horowitz, F. Garnier, R. Hajlaoui, S. Jemai, H. Bouchriha, Eur. Phys. J. Appl. Phys. 19, 117 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

See, K., Huang, J., Becknell, A., Katz, H. (2008). Performance Requirements and Mechanistic Analysis of Organic Transistor-Based Phosphonate Gas Sensors. In: Bernards, D.A., Malliaras, G.G., Owens, R.M. (eds) Organic Semiconductors in Sensor Applications. Materials Science, vol 107. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76314-7_7

Download citation

Publish with us

Policies and ethics