A Cognitive Support Framework for Ontology Mapping

  • Sean M. Falconer
  • Margaret-Anne Storey
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4825)


Ontology mapping is the key to data interoperability in the semantic web. This problem has received a lot of research attention, however, the research emphasis has been mostly devoted to automating the mapping process, even though the creation of mappings often involve the user. As industry interest in semantic web technologies grows and the number of widely adopted semantic web applications increases, we must begin to support the user. In this paper, we combine data gathered from background literature, theories of cognitive support and decision making, and an observational case study to propose a theoretical framework for cognitive support in ontology mapping tools. We also describe a tool called CogZ that is based on this framework.


Mapping Process Candidate List Mapping Tool Candidate Mapping Ontology Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Performance, parsing and pragmatics,
  2. 2.
    Bernstein, P.A., Melnik, S.: Model management 2.0: Manipulating richer mappings. In: SIGNMOD 2007 (June 2007)Google Scholar
  3. 3.
    Brainbridge, L.: Ironies of automation. Automatica 19, 775–779 (1983)CrossRefGoogle Scholar
  4. 4.
    Detienne, F.: Software Design - Cognitive Aspects. Springer, HeidelbergGoogle Scholar
  5. 5.
    H.-H. Do. Schema Matching and Mapping-based Data Integration. PhD thesis, Department of Computer Science, Universität Leipzig (2006)Google Scholar
  6. 6.
    Ehrig, M., Sure, Y.: Ontology mapping - an integrated approach. In: 1st European Semantic Web Symposium, Heraklion, Greece, Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Ehrig, M., Sure, Y.: FOAM–framework for ontology alignment and mapping; results of the ontology alignment initiative. In: Overmars, M.H. (ed.) The Design of Dynamic Data Structures. LNCS, vol. 156, pp. 72–76. Springer, Heidelberg (1983)Google Scholar
  8. 8.
    Einhorn, H.J., Hogarth, R.M.: Behavioral decision theory: Processes of judgement and choice. Annual Review of Psychology 32, 53–88 (1981)CrossRefGoogle Scholar
  9. 9.
    Euzénat, J.: Eon ontology alignment contest,
  10. 10.
    Euzénat, J.: An API for ontology alignment (version 2.1) (February 2006)Google Scholar
  11. 11.
    Euzénat, J., Loup, D., Touzani, M., Valtchev, P.: Ontology alignment with ola. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Falconer, S.M., Noy, N.F., Storey, M.-A.: Towards understanding the needs of cognitive support for ontology mapping. In: Ontology Matching Workshop (2006)Google Scholar
  13. 13.
    Fekete, J.-D., Plaisant, C.: Interactive information visualization of a million items. In: INFOVIS 2002. Proceedings of the IEEE Symposium on Information Visualization (InfoVis’02), Washington, DC, USA, p. 117. IEEE Computer Society Press, Los Alamitos (2002)Google Scholar
  14. 14.
    Kerckhoff, A.C., Davis, K.E.: Value consensus and need complementarity in mate selection. American Sociological Review 27, 295–303 (1962)CrossRefGoogle Scholar
  15. 15.
    Kirlik, A.: Global Perspectives on the Ecology of Human-Machine Systems. In: Requirements for psychological models to support design: Toward ecological task analysis, pp. 68–120, ch. 4. Lawrence Erlbaum, Mahwah (1995)Google Scholar
  16. 16.
    Lambrix, P., Edberg, A.: Evaluation of ontology merging tools in bioinformatics. In: Proceedings Pacific Symposium on Biocomputing, Kauai, Hawaii, USA, pp. 589–600 (2003)Google Scholar
  17. 17.
    Lanzenberger, M., Sampson, J.: Alviz - a tool for visual ontology alignment. In: IV 2006: Proceedings of the conference on Information Visualization, Washington, DC, USA, pp. 430–440. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  18. 18.
    Löwgren, J.: Human-computer Interaction. What every system developer should know, Studentlitteratur, Lund (1993)Google Scholar
  19. 19.
    McGuinness, D.L., Fikes, R., Rice, J., Wilder, S.: The chimaera ontology environment. In: Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on Innovative Applications of Artificial Intelligence, pp. 1123–1124 (2000)Google Scholar
  20. 20.
    Noy, N.F., Musen, M.A.: Evaluating ontology-mapping tools: Requirements and experience. In: Proceedings of OntoWeb-SIG3 Workshop at the 13th International Conference on Knowledge Engineering and Knowledge Management, Siguenza, Spain, pp. 1–14 (2002)Google Scholar
  21. 21.
    Noy, N.F., Musen, M.A.: The PROMPT suite: Interactive tools for ontology merging and mapping. International Journal of Human-Computer Studies 59(6), 983–1024 (2003)CrossRefGoogle Scholar
  22. 22.
    Palmer, S.B.: The semantic web: An introduction (2001),
  23. 23.
    Robertson, G.G., Czerwinski, M.P., Churchill, J.E.: Visualization of mappings between schemas. In: CHI 2005. Proceedings of the SIGCHI conference on Human factors in computing systems, Portland, Oregon, USA, pp. 431–439. ACM Press, New York, NY, USA (2005)CrossRefGoogle Scholar
  24. 24.
    Sherif, M., Taub, D., Hovland, C.: Assimilation and contrast effects of anchoring stimuli on judgements. Journal of Experimental Psychology 55, 150–155 (1958)CrossRefGoogle Scholar
  25. 25.
    Shneiderman, B.: Tree visualization with tree-maps: 2-d space-filling approach. ACM Trans. Graph. 11(1), 92–99 (1992)zbMATHCrossRefGoogle Scholar
  26. 26.
    Simon, H.A., Dantzig, G.B., Hogarth, R., Piott, C.R., Raiffa, H., Schelling, T.C.: Decision making and problem solving. National Academy of Sciences  (1986)Google Scholar
  27. 27.
    Snyder, M., Cantor, N.: Testing hypotheses about other people:the use of historical knowledge. Journal of Experimental Social Psychology 15, 330–342 (1979)CrossRefGoogle Scholar
  28. 28.
  29. 29.
    Victor, B.: Magic ink: Information software and the graphical interface,
  30. 30.
    Walenstein, A.: Cognitive support in software engineering tools: A distributed cognition framework. PhD thesis, Simon Fraser University, Vancouver, BC (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Sean M. Falconer
    • 1
  • Margaret-Anne Storey
    • 1
  1. 1.University of Victoria, Victoria BC V8W 2Y2Canada

Personalised recommendations