Abstract

In the 1970s a new class of polymers possessing high electronic conductivity was discovered. Although the high conductivity of these polymers is an interesting and utilizable property in itself, the inherent variability of their conductivity is the crucial property of these polymers—the ease with which these materials can be reversibly switched between their insulating and conducting forms. Electrochemical techniques are particularly well-suited to the controlled synthesis of these compounds and for the tuning of a well-defined oxidation state. In this introductory part, the most important features and areas of application of these compounds are outlined, and previous reviews in this field are highlighted.

Keywords: Electrical conduction in polymeric systems – Nobel Prize in Chemistry 2000 – Role of electrochemistry – Theoretical and practical importance – Previous reviews

Keywords

Conducting Polymer Electrochemical Quartz Crystal Microbal High Electronic Conductivity Electroanalytical Chemistry Synth Meet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Inzelt G, Pineri M, Schultze JW, Vorotyntsev MA (2000) Electrochim Acta 45:2403CrossRefGoogle Scholar
  2. 2.
    Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ (1977) J Chem Soc Chem Commun 579Google Scholar
  3. 3.
    Ito T, Shirakawa H, Ikeda S (1974) J Polym Sci Pol Chem 12:11Google Scholar
  4. 4.
    Chiang CK, Fischer CR, Park YW, Heeger AJ, Shirakawa H, Louis EJ, Gau SC, MacDiarmid AG (1977) Phys Rev Lett 39:1098CrossRefGoogle Scholar
  5. 5.
    Chiang CK, Druy MA, Gau SC, Heeger AJ, Louis EJ, MacDiarmid AG, Park YW, Shirakawa H (1978) J Am Chem Soc 100:1013CrossRefGoogle Scholar
  6. 6.
    Shirakawa H (2001) Angew Chem Int Ed 40:2574CrossRefGoogle Scholar
  7. 7.
    MacDiarmid AG (2001) Angew Chem Int Ed 40:2581CrossRefGoogle Scholar
  8. 8.
    Heeger AJ (2001) Angew Chem Int Ed 40:2591CrossRefGoogle Scholar
  9. 9.
    Letheby H (1862) J Chem Soc 15:161CrossRefGoogle Scholar
  10. 10.
    Abruna HD (1988) Coord Chem Rev 86:135CrossRefGoogle Scholar
  11. 11.
    Albery WJ, Hillman AR (1981) Ann Rev C R Soc Chem London 377Google Scholar
  12. 12.
    Bard AJ (1994) Integrated chemical systems. Wiley, New YorkGoogle Scholar
  13. 13.
    Diaz AF, Rubinson JF, Mark HB Jr (1988) Electrochemistry and electrode applications of electroactive/conducting polymers. In: Henrici-Olivé G, Olivé S (eds) Advances in polymer science, vol 84. Springer, Berlin, p 113Google Scholar
  14. 14.
    Doblhofer K (1994) Thin polymer films on electrodes. In: Lipkowski J, Ross PN (eds) Electrochemistry of novel materials. VCH, New York, p 141Google Scholar
  15. 15.
    Evans GP (1990) The electrochemistry of conducting polymers. In: Gerischer H, Tobias CW (eds) Advances in electrochemical science and engineering, vol 1. VCH, Weinheim, p 1CrossRefGoogle Scholar
  16. 16.
    Forster RJ, Vos JG (1992) Theory and analytical applications of modified electrodes. In: Smyth M, Vos JG (eds) Comprehensive analytical chemistry, vol 27. Elsevier, Amsterdam, p 465Google Scholar
  17. 17.
    Fujihira M (1986) Modified electrodes. In: Fry AJ, Britton WE (eds) Topics in organic electrochemistry. Plenum, New York, p 225Google Scholar
  18. 18.
    Gerard M, Chaubey A, Malhotra BD (2002) Applications of conducting polymers to biosensors, Biosens Bioelectron 17:345CrossRefGoogle Scholar
  19. 19.
    Inzelt G (1994) Mechanism of charge transport in polymer-modified electrodes. In: Bard AJ (ed) Electroanalytical chemistry, vol 18. Marcel Dekker, New York, p 89Google Scholar
  20. 20.
    Kaneko M, Wöhrle D (1988) Polymer-coated electrodes: new materials for science and industry. In: Henrici-Olivé G, Olivé S (eds) Advances in polymer science, vol 84. Springer, Berlin, p 143Google Scholar
  21. 21.
    Kutner W, Wang J, L’Her M, Buck RP (1998) Pure Appl Chem 70:1301CrossRefGoogle Scholar
  22. 22.
    Linford RG (ed) (1987) Electrochemical science and technology of polymers, vol 1. Elsevier, LondonGoogle Scholar
  23. 23.
    Linford RG (ed) (1990) Electrochemical science and technology of polymers, vol 2. Elsevier, LondonGoogle Scholar
  24. 24.
    Lyons MEG (ed) (1994) Electroactive polymer electrochemistry, part I. Plenum, New YorkGoogle Scholar
  25. 25.
    Lyons MEG (ed) (1996) Electroactive polymer electrochemistry, part II. Plenum, New YorkGoogle Scholar
  26. 26.
    Malev VV, Kontratiev VV (2006) Russ Chem Rev 75:147CrossRefGoogle Scholar
  27. 27.
    Murray RW (1984) Chemically modified electrodes. In: Bard AJ (ed) Electroanalytical chemistry, vol 13. Marcel Dekker, New York, p 191Google Scholar
  28. 28.
    Murray RW (ed) (1992) Molecular design of electrode surfaces. In: Weissberger A, Saunders H Jr (eds) Techniques of chemistry, vol 22. Wiley, New YorkGoogle Scholar
  29. 29.
    Nalwa HS (ed) (1997–2001) Handbook of organic conducting molecules and polymers, vols 1–4. Wiley, New YorkGoogle Scholar
  30. 30.
    Scrosati B (1995) Polymer electrodes. In: Bruce PG (ed) Solid state electrochemistry. Cambridge University Press, Cambridge, p 229Google Scholar
  31. 31.
    Skotheim TA (ed) (1986) Handbook of conducting polymers. Marcel Dekker, New York, vols 1–2Google Scholar
  32. 32.
    Skotheim TA (ed) (1998) Handbook of conducting polymers. Marcel Dekker, New YorkGoogle Scholar
  33. 33.
    Vorotyntsev MA, Levi MD (1991) Elektronno–provodyashchiye polimeri. In: Polukarov YuM (ed) Itogi nauki i tekhniki, vol 34. Viniti, MoscowGoogle Scholar
  34. 34.
    Podlovchenko BI, Andreev VN (2002) Uspekhi Khimii 71:950Google Scholar
  35. 35.
    Forrer P, Repphun G, Schmidt E, Siegenthaler H (1997) Electroactive polymers: an electrochemical and in situ scanning probe microscopy study. In: Jerkiewicz G, Soriaga MP, Uosaki K, Wieckowski A (eds) Solid–liquid electrochemical interfaces (ACS Symp Ser 656). American Chemical Society, Washington, DC, p 210Google Scholar
  36. 36.
    Malhotra BD, Chaubey A, Singh SP (2006) Anal Chem Acta 578:59CrossRefGoogle Scholar
  37. 37.
    Biallozor S, Kupniewska A (2005) Synth Met 155:443CrossRefGoogle Scholar
  38. 38.
    Harsányi G (1995) Polymer films in sensor applications. Technomic, Basel, SwitzerlandGoogle Scholar
  39. 39.
    Li XG, Huang MR, Duan W (2002) Chem Rev 102:2925CrossRefGoogle Scholar
  40. 40.
    Genies EM, Boyle A, Lapkowski M, Tsintavis C (1990) Synth Met 36:139CrossRefGoogle Scholar
  41. 41.
    Inzelt G (1995) Electroanalysis 7:895CrossRefGoogle Scholar
  42. 42.
    Waltman RJ, Bargon J (1986) Can J Chem 64:76CrossRefGoogle Scholar
  43. 43.
    Stejkal J, Gilbert RG (2002) Pure Appl Chem 74:857CrossRefGoogle Scholar
  44. 44.
    Stejkal J, Sapurina I (2005) Pure Appl Chem 77:815CrossRefGoogle Scholar
  45. 45.
    Syed AA, Dinesan MK (1991) Talanta 38:815CrossRefGoogle Scholar
  46. 46.
    Tallman D, Spinks G, Dominis A, Wallace G (2002) J Solid State Electrochem 6:73Google Scholar
  47. 47.
    Monk PMS, Mortimer RJ, Rosseinsky DR (1995) Electrochromism. VCH, Weinheim, pp 124–143CrossRefGoogle Scholar
  48. 48.
    Ramanavicius A, Ramanaviciene A, Malinauskas A (2006) Electrochim Acta 51:6025CrossRefGoogle Scholar
  49. 49.
    Roncali J (1992) Chem Rev 92:711CrossRefGoogle Scholar
  50. 50.
    Buttry DA (1991) Applications of the quartz crystal microbalance to electrochemistry. In: Bard AJ (ed) Electroanalytical chemistry, vol 17, Marcel Dekker, New York, p 1Google Scholar
  51. 51.
    Ward MD (1995) Principles and applications of the electrochemical quartz crystal microbalance. In: Rubinstein I (ed) Physical electrochemistry. Marcel Dekker, pp 293–338Google Scholar
  52. 52.
    Buck RP, Lindner E, Kutner W, Inzelt G (2004) Pure Appl Chem 76:1139CrossRefGoogle Scholar
  53. 53.
    Hepel M (1999) Electrode–solution interface studied with electrochemical quartz crystal nanobalance. In: Wieczkowski A (ed) Interfacial electrochemistry. Marcel Dekker, New YorkGoogle Scholar
  54. 54.
    Barbero CA (2005) Phys Chem Chem Phys 7:1885CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Personalised recommendations