Skip to main content

Dynamic Policy Analysis

  • Chapter

Part of the Advanced Studies in Theoretical and Applied Econometrics book series (ASTA,volume 46)

Abstract

This chapter studies the microeconometric treatment-effect and structural approaches to dynamic policy evaluation. First, we discuss a reduced-form approach based on a sequential randomization or dynamic matching assumption that is popular in biostatistics. We then discuss two complementary approaches for treatments that are single stopping times and that allow for non-trivial dynamic selection on unobservables.The first builds on continuous-time duration and event-history models.The second extends the discrete-time dynamic discrete-choice literature.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aakvik, A., J. J. Heckman, and E. J. Vytlacil (2005). Estimating treatment effects for discrete outcomes when responses to treatment vary: An application to Norwegian vocational rehabilitation programs. Journal of Econometrics 125(1–2), 15–51.

    Article  Google Scholar 

  • Aalen, O. O. and H. K. Gjessing (2004, December). Survival models based on the Ornstein-Uhlenbeck process. Lifetime Data Analysis 10(4), 407–423.

    Google Scholar 

  • Abbring, J. H. (2002, February). Stayers versus defecting movers: A note on the identification of defective duration models. Economics Letters 74(3), 327–331.

    Google Scholar 

  • Abbring, J. H. (2003). Dynamic econometric program evaluation. Discussion Paper 804, IZA, Bonn. Paper prepared for the H. Theil Memorial Conference, Amsterdam, 16–18 August 2002.

    Google Scholar 

  • Abbring, J. H. (2007). Mixed hitting-time models. Discussion Paper 07-57/3, Tinbergen Institute, Amsterdam.

    Google Scholar 

  • Abbring, J. H. (2008). The event-history approach to program evaluation. In D. Millimet, J. Smith, and E. Vytlacil (Eds.), Modeling and Evaluating Treatment Effects in Econometrics, Volume 21 of Advances in Econometrics. Oxford: Elsevier Science, pp. 33–55.

    Google Scholar 

  • Abbring, J. H. and J. R. Campbell (2005). A firm’s first year. Discussion Paper 05-046/3, Tinbergen Institute, Amsterdam.

    Google Scholar 

  • Abbring, J. H. and J. J. Heckman (2007). Econometric evaluation of social programs, part III: Distributional treatment effects, dynamic treatment effects, dynamic discrete choice, and general equilibrium policy evaluation. In J. Heckman and E. Leamer (Eds.), Handbook of Econometrics, Volume 6, pp. 5145–5303, Amsterdam: Elsevier.

    Google Scholar 

  • Abbring, J. H. and G. J. Van den Berg (2003a, September). The identifiability of the mixed proportional hazards competing risks model. Journal of the Royal Statistical Association, Series B 65(3), 701–710.

    Google Scholar 

  • Abbring, J. H. and G. J. Van den Berg (2003b, September). The nonparametric identification of treatment effects in duration models. Econometrica 71(5), 1491–1517.

    Google Scholar 

  • Abbring, J. H. and G. J. Van den Berg (2003c). A simple procedure for inference on treatment effects in duration models. Discussion Paper 2003:19, IFAU, Uppsala.

    Google Scholar 

  • Abbring, J. H. and G. J. Van den Berg (2004, January). Analyzing the effect of dynamically assigned treatments using duration models, binary treatment models, and panel data models. Empirical Economics 29(1), 5–20.

    Google Scholar 

  • Abbring, J. H. and G. J. Van den Berg (2005). Social experiments and instrumental variables with duration outcomes. Discussion Paper 05-047/3, Tinbergen Institute, Amsterdam.

    Google Scholar 

  • Abbring, J. H., G. J. Van den Berg, and J. C. Van Ours (2005, July). The effect of unemployment insurance sanctions on the transition rate from unemployment to employment. Economic Journal 115(505), 602–630.

    Google Scholar 

  • Aldrich, J. (1989, January). Autonomy. Oxford Economic Papers 41(1), 15–34.

    Google Scholar 

  • Andersen, P. K., Ø. Borgan, R. Gill, and N. Keiding (1993). Statistical Models Based on Counting Processes. New York: Springer-Verlag.

    Google Scholar 

  • Belzil, C. and J. Hansen (2002, September). Unobserved ability and the return to schooling. Econometrica 70(5), 2075–2091.

    Google Scholar 

  • Black, D. A., J. A. Smith, M. C. Berger, and B. J. Noel (2003,September). Is the threat of reemployment services more effective than the services themselves? Evidence from random assignment in the UI system. American Economic Review 93(4), 1313–1327.

    Google Scholar 

  • Bonnal, L., D. Fougère, and A. Sérandon (1997, October). Evaluating the impact of French employment policies on individual labour market histories. Review of Economic Studies 64(4), 683–713.

    Google Scholar 

  • Cameron, S. V. and J. J. Heckman (1998, April). Life cycle schooling and dynamic selection bias: Models and evidence for five cohorts of American males. Journal of Political Economy 106(2), 262–333.

    Google Scholar 

  • Card, D. and D. G. Sullivan (1988, May). Measuring the effect of subsidized training programs on movements in and out of employment. Econometrica 56(3), 497–530.

    Google Scholar 

  • Carneiro, P., K. Hansen, and J. J. Heckman (2001, Fall). Removing the veil of ignorance in assessing the distributional impacts of social policies. Swedish Economic Policy Review 8(2), 273–301.

    Google Scholar 

  • Carneiro, P., K. Hansen, and J. J. Heckman (2003, May). Estimating distributions of treatment effects with an application to the returns to schooling and measurement of the effects of uncertainty on college choice. International Economic Review 44(2), 361–422.

    Google Scholar 

  • Chan, T. Y. and B. H. Hamilton (2006). Learning, private information and the economic evaluation of randomized experiments. Journal of Political Economy 114(6), 997–1040.

    Article  Google Scholar 

  • Cunha, F. and J. J. Heckman (2007). The evolution of earnings risk in the US economy. Presented at the 9th World Congress of the Econometric Society, London 2005, under revision.

    Google Scholar 

  • Cunha, F. and J. J. Heckman (2008). A framework for the analysis of inequality. Macroeconomic Dynamics. Forthcoming.

    Google Scholar 

  • Cunha, F., J. J. Heckman, and S. Navarro (2005, April). Separating uncertainty from heterogeneity in life cycle earnings, The 2004 Hicks Lecture. Oxford Economic Papers 57(2), 191–261.

    Google Scholar 

  • MCunha, F., J. J. Heckman, and S. Navarro (2006). Counterfactual analysis of inequality and social mobility. In S. L. Morgan, D. B. Grusky, and G. S. Fields (Eds.), Mobility and Inequality: Frontiers of Research in Sociology and Economics, Chap. 4, pp. 290–348. Stanford, CA: Stanford University Press.

    Google Scholar 

  • Cunha, F., J. J. Heckman, and S. Navarro (2007). The identification and economic content of ordered choice models with stochastic cutoffs. International Economic Review. 48(4), 1273–1309.

    Google Scholar 

  • Eberwein, C., J. C. Ham, and R. J. LaLonde (1997, October). The impact of being offered and receiving classroom training on the employment histories of disadvantaged women: Evidence from experimental data. Review of Economic Studies 64(4), 655–682.

    Google Scholar 

  • Eckstein, Z. and K. I. Wolpin (1999, November). Why youths drop out of high school: The impact of preferences, opportunities, and abilities. Econometrica 67(6), 1295–1339.

    Google Scholar 

  • Falmagne, J.-C. (1985). Elements of Psychophysical Theory. Oxford Psychology Series No. 6. New York: Oxford University Press.

    Google Scholar 

  • Fitzenberger, B., A. Osikominu, and R. Völter (2006, May). Get training or wait? Long-run employment effects of training programs for the unemployed in West Germany, Discussion paper 2121, IZA, Bonn.

    Google Scholar 

  • Fleming, T. R. and D. P. Harrington (1991). Counting Processes and Survival Analysis. New York: Wiley.

    Google Scholar 

  • Flinn, C. and J. J. Heckman (1982, January). New methods for analyzing structural models of labor force dynamics. Journal of Econometrics 18(1), 115–68.

    Google Scholar 

  • Florens, J.-P. and M. Mouchart (1982). A note on noncausality. Econometrica 50, 583–591.

    Article  Google Scholar 

  • Florens, J.-P., M. Mouchart, and J.-M. Rolin (1990). Invariance arguments in Bayesian statistics. In J. J. Gabszewicz, J. F. Richard, and L. A. Wolsey (Eds.), Economic Decision-Making: Games, Econometrics and Optimisation: Contributions in Honour of Jacques H. Dreze, pp. 351–367. New York: Elsevier Science.

    Google Scholar 

  • Freedman, D. A. (2004, August). On specifying graphical models for causation and the identification problem. Evaluation Review 28(4), 267–293.

    Google Scholar 

  • Freund, J. E. (1961, December). A bivariate extension of the exponential distribution. Journal of the American Statistical Association 56(296), 971–977.

    Google Scholar 

  • Frisch, R. (1938). Autonomy of economic relations. Paper given at League of Nations. Reprinted in D.F. Hendry and M.S. Morgan (1995), The Foundations of Econometric Analysis, Cambridge: Cambridge University Press.

    Google Scholar 

  • Ghez, G. R. and G. S. Becker (1975). The Allocation of Time and Goods over the Life Cycle. New York: National Bureau of Economic Research.

    Google Scholar 

  • Gill, R. D. and J. M. Robins (2001, December). Causal inference for complex longitudinal data: The continuous case. Annals of Statistics 29(6), 1785–1811.

    Google Scholar 

  • Granger, C. W. J. (1969, August). Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37(3), 424–438.

    Google Scholar 

  • Gritz, R. M. (1993, May–June). The impact of training on the frequency and duration of employment. Journal of Econometrics 57(1–3), 21–51.

    Google Scholar 

  • Grubb, D. (2000). Eligibility criteria for unemployment benefits. In OECD Economic Studies, Special issue: Making Work Pay, Number 31, pp. 147–184. OECD.

    Google Scholar 

  • Haavelmo, T. (1943, January). The statistical implications of a system of simultaneous equations. Econometrica 11(1), 1–12.

    Google Scholar 

  • Ham, J. C. and R. J. LaLonde (1996, January). The effect of sample selection and initial conditions in duration models: Evidence from experimental data on training. Econometrica 64(1), 175–205.

    Google Scholar 

  • Hansen, L. P. and T. J. Sargent (1980, February). Formulating and estimating dynamic linear rational expectations models. Journal of Economic Dynamics and Control 2(1), 7–46.

    Google Scholar 

  • Heckman, J. J. (1974, July). Shadow prices, market wages, and labor supply. Econometrica 42(4), 679–694.

    Google Scholar 

  • Heckman, J. J. (1981a). Heterogeneity and state dependence. In S. Rosen (Ed.), Studies in Labor Markets, National Bureau of Economic Research, pp. 91–139. Chicago: University of Chicago Press.

    Google Scholar 

  • Heckman, J. J. (1981b). The incidental parameters problem and the problem of initial conditions in estimating a discrete time-discrete data stochastic process and some Monte Carlo evidence. In C. Manski and D. McFadden (Eds.), Structural Analysis of Discrete Data with Econometric Applications, pp. 179–85. Cambridge, MA: MIT Press.

    Google Scholar 

  • Heckman, J. J. (1981c). Statistical models for discrete panel data. In C. Manski and D. McFadden (Eds.), Structural Analysis of Discrete Data with Econometric Applications, pp. 114–178. Cambridge, MA: MIT Press.

    Google Scholar 

  • Heckman, J. J. (1990, May).Varieties of selection bias. American Economic Review 80(2), 313–318.

    Google Scholar 

  • Heckman, J. J. (2005a). The scientific model of causality. Unpublished manuscript, University of Chicago, Department of Economics.

    Google Scholar 

  • Heckman, J. J. (2005b, August). The scientific model of causality. Sociological Methodology 35(1), 1–97.

    Google Scholar 

  • Heckman, J. J. and G. J. Borjas (1980, August). Does unemployment cause future unemployment? Definitions, questions and answers from a continuous time model of heterogeneity and state dependence. Economica 47(187), 247–283. Special Issue on Unemployment.

    Google Scholar 

  • Heckman, J. J. and B. E. Honoré (1989, June). The identifiability of the competing risks model. Biometrika 76(2), 325–330.

    Google Scholar 

  • Heckman, J. J. and B. E. Honoré (1990, September). The empirical content of the Roy model. Econometrica 58(5), 1121–1149.

    Google Scholar 

  • Heckman, J. J., R. J. LaLonde, and J. A. Smith (1999). The economics and econometrics of active labor market programs. In O. Ashenfelter and D. Card (Eds.), Handbook of Labor Economics, Volume 3A, Chap. 31, pp. 1865–2097. New York: North-Holland.

    Google Scholar 

  • Heckman, J. J., L. J. Lochner, and C. Taber (1998, January). Explaining rising wage inequality: Explorations with a dynamic general equilibrium model of labor earnings with heterogeneous agents. Review of Economic Dynamics 1(1), 1–58.

    Google Scholar 

  • Heckman, J. J., L. J. Lochner, and P. E. Todd (2006). Earnings equations and rates of return: The Mincer equation and beyond. In E. A. Hanushek and F. Welch (Eds.), Handbook of the Economics of Education, Chap. 7, pp. 307–458. Amsterdam: North-Holland.

    Chapter  Google Scholar 

  • Heckman, J. J. and T. E. MaCurdy (1980, January). A life cycle model of female labour supply. Review of Economic Studies 47(1), 47–74.

    Google Scholar 

  • Heckman, J. J. and S. Navarro (2004, February). Using matching, instrumental variables, and control functions to estimate economic choice models. Review of Economics and Statistics 86(1), 30–57.

    Google Scholar 

  • Heckman, J. J. and S. Navarro (2005). Empirical estimates of option values of education and information sets in a dynamic sequential choice model. Unpublished manuscript, University of Chicago, Department of Economics.

    Google Scholar 

  • Heckman, J. J. and S. Navarro (2007, February). Dynamic discrete choice and dynamic treatment effects. Journal of Econometrics 136(2), 341–396.

    Google Scholar 

  • Heckman, J. J. and B. S. Singer (1984, January–February). Econometric duration analysis. Journal of Econometrics 24(1–2), 63–132.

    Google Scholar 

  • Heckman, J. J. and B. S. Singer (1986). Econometric analysis of longitudinal data. In Z. Griliches and M. D. Intriligator (Eds.), Handbook of Econometrics, Volume 3, Chap. 29, pp. 1690–1763. Amsterdam: North-Holland.

    Google Scholar 

  • Heckman, J. J. and J. A. Smith (1998). Evaluating the welfare state. In S. Strom (Ed.), Econometrics and Economic Theory in the Twentieth Century: The Ragnar Frisch Centennial Symposium, pp. 241–318. New York: Cambridge University Press.

    Google Scholar 

  • Heckman, J. J., J. Stixrud, and S. Urzua (2006, July). The effects of cognitive and noncognitive abilities on labor market outcomes and social behavior. Journal of Labor Economics 24(3), 411–482.

    Google Scholar 

  • Heckman, J. J. and C. Taber (1994). Econometric mixture models and more general models for unobservables in duration analysis. Statistical Methods in Medical Research 3(3), 279–299.

    Article  Google Scholar 

  • Heckman, J. J., J. L. Tobias, and E. J. Vytlacil (2001, October). Four parameters of interest in the evaluation of social programs. Southern Economic Journal 68(2), 210–223.

    Google Scholar 

  • Heckman, J. J., J. L. Tobias, and E. J. Vytlacil (2003, August). Simple estimators for treatment parameters in a latent variable framework. Review of Economics and Statistics 85(3), 748–754.

    Google Scholar 

  • Heckman, J. J., S. Urzua, and E. J. Vytlacil (2006). Understanding instrumental variables in models with essential heterogeneity. Review of Economics and Statistics 88(3), 389–432.

    Article  Google Scholar 

  • Heckman, J. J., S. Urzua, and G. Yates (2007). The identification and estimation of option values in a model with recurrent states. Unpublished manuscript, University of Chicago, Department of Economics.

    Google Scholar 

  • Heckman, J. J. and E. J. Vytlacil (1999, April). Local instrumental variables and latent variable models for identifying and bounding treatment effects. Proceedings of the National Academy of Sciences 96, 4730–4734.

    Google Scholar 

  • Heckman, J. J. and E. J. Vytlacil (2001). Causal parameters, treatment effects and randomization. Unpublished manuscript, University of Chicago, Department of Economics.

    Google Scholar 

  • Heckman, J. J. and E. J. Vytlacil (2005, May). Structural equations, treatment effects and econometric policy evaluation. Econometrica 73(3), 669–738.

    Google Scholar 

  • Heckman, J. J. and E. J. Vytlacil (2007a). Econometric evaluation of social programs, part I: Causal models, structural models and econometric policy evaluation. In J. Heckman and E. Leamer (Eds.), Handbook of Econometrics, Volume 6B, pp. 4779–4874, Amsterdam: Elsevier.

    Google Scholar 

  • Heckman, J. J. and E. J. Vytlacil (2007b). Econometric evaluation of social programs, part II: Using the marginal treatment effect to organize alternative economic estimators to evaluate social programs and to forecast their effects in new environments. In J. Heckman and E. Leamer (Eds.), Handbook of Econometrics, Volume 6B, pp. 4875–5144, Amsterdam: Elsevier.

    Google Scholar 

  • Hendry, D. F. and M. S. Morgan (1995). The Foundations of Econometric Analysis. New York: Cambridge University Press.

    Google Scholar 

  • Holland, P. W. (1986, December). Statistics and causal inference. Journal of the American Statistical Association 81(396), 945–960.

    Google Scholar 

  • Honoré, B. E. (1993, January). Identification results for duration models with multiple spells. Review of Economic Studies 60(1), 241–246.

    Google Scholar 

  • Honor´, B. E. and A. Lewbel (2002, September). Semiparametric binary choice panel data models without strictly exogenous regressors. Econometrica 70,(5), 2053–2063.

    Google Scholar 

  • Honor´, B. E. and A. Lewbel (2002, September). Semiparametric binary choice panel data models without strictly exogeneous regressors. Econometrica 70,(5), 2053–2063.

    Google Scholar 

  • Hotz, V. J. and R. A. Miller (1988, January). An empirical analysis of life cycle fertility and female labor supply. Econometrica 56(1), 91–118.

    Google Scholar 

  • Hotz, V. J. and R. A. Miller (1993, July). Conditional choice probabilities and the estimation of dynamic models. Review of Economic Studies 60(3), 497–529.

    Google Scholar 

  • Hurwicz, L. (1962). On the structural form of interdependent systems. In E. Nagel, P. Suppes, and A. Tarski (Eds.), Logic, Methodology and Philosophy of Science, pp. 232–239. Palo Alto: Stanford University Press.

    Google Scholar 

  • Kalbfleisch, J. D. and R. L. Prentice (1980). The Statistical Analysis of Failure Time Data. New York: Wiley.

    Google Scholar 

  • Keane, M. P. and K. I. Wolpin (1994, November). The solution and estimation of discrete choice dynamic programming models by simulation and interpolation: Monte Carlo evidence. The Review of Economics and Statistics 76(4), 648–672.

    Google Scholar 

  • Keane, M. P. and K. I. Wolpin (1997, June). The career decisions of young men. Journal of Political Economy 105(3), 473–522.

    Google Scholar 

  • Keiding, N. (1999, September). Event history analysis and inference from observational epidemiology. Statistics in Medicine 18(17–18), 2353–2363.

    Google Scholar 

  • Lancaster, T. (1979, July). Econometric methods for the duration of unemployment. Econometrica 47(4), 939–956.

    Google Scholar 

  • Leamer, E. E. (1985, Spring). Vector autoregressions for causal inference? Carnegie-Rochester Conference Series on Public Policy 22, 255–303.

    Google Scholar 

  • Lechner, M. and R. Miquel (2002). Identification of effects of dynamic treatments by sequential conditional independence assumptions. Discussion paper, University of St. Gallen, Department of Economics.

    Google Scholar 

  • Lewbel, A. (2000, July). Semiparametric qualitative response model estimation with unknown heteroscedasticity or instrumental variables. Journal of Econometrics 97(1), 145–177.

    Google Scholar 

  • Lok, J. (2007). Statistical modelling of causal effects in continuous time. Annals of Statistics. Forthcoming.

    Google Scholar 

  • Lok, J. J. (2001). Statistical Modelling of Causal Effects in Time. Ph. D. thesis, Free University, Amsterdam. Division of Mathematics and Computer Science, Faculty of Sciences,.

    Google Scholar 

  • MaCurdy, T. E. (1981, December). An empirical model of labor supply in a life-cycle setting. Journal of Political Economy 89(6), 1059–1085.

    Google Scholar 

  • Magnac, T. and D. Thesmar (2002, March). Identifying dynamic discrete decision processes. Econometrica 70(2), 801–816.

    Google Scholar 

  • Manski, C. F. (1988, September). Identification of binary response models. Journal of the American Statistical Association 83(403), 729–738.

    Google Scholar 

  • Manski, C. F. (1993, July). Dynamic choice in social settings: Learning from the experiences of others. Journal of Econometrics 58(1–2), 121–136.

    Google Scholar 

  • Manski, C. F. (2004, September). Measuring expectations. Econometrica 72(5), 1329–1376.

    Google Scholar 

  • Matzkin, R. L. (1992, March). Nonparametric and distribution-free estimation of the binary threshold crossing and the binary choice models. Econometrica 60(2), 239–270.

    Google Scholar 

  • Matzkin, R. L. (1993, July). Nonparametric identification and estimation of polychotomous choice models. Journal of Econometrics 58(1–2), 137–168.

    Google Scholar 

  • Matzkin, R. L. (1994). Restrictions of economic theory in nonparametric methods. In R. Engle and D. McFadden (Eds.), Handbook of Econometrics, Volume 4, pp. 2523–58. New York:North-Holland.

    Google Scholar 

  • Matzkin, R. L. (2003, September). Nonparametric estimation of nonadditive random functions. Econometrica 71(5), 1339–1375.

    Google Scholar 

  • Meyer, B. D. (1990, July). Unemployment insurance and unemployment spells. Econometrica 58(4), 757–782.

    Google Scholar 

  • Meyer, B. D. (1996, January). What have we learned from the Illinois reemployment bonus experiment? Journal of Labor Economics 14(1), 26–51.

    Google Scholar 

  • Miller, R. A. (1984, December). Job matching and occupational choice. Journal of Political Economy 92(6), 1086–1120.

    Google Scholar 

  • Mincer, J. (1974). Schooling, Experience and Earnings. New York: Columbia University Press for National Bureau of Economic Research.

    Google Scholar 

  • Mortensen, D. T. (1977, July). Unemployment insurance and job search decisions. Industrial and Labor Relations Review 30(4), 505–517.

    Google Scholar 

  • Mortensen, D. T. (1986). Job search and labor market analysis. In O. Ashenfelter and P. R. C. Layard (Eds.), Handbook of Labor Economics, Volume 2 of Handbooks in Economics, pp. 849–919. New York: Elsevier Science.

    Google Scholar 

  • Murphy, S. A. (2003, May). Optimal dynamic treatment regimes. Journal of the Royal Statistical Association, Series B 65(2), 331–366.

    Google Scholar 

  • Navarro, S. (2004). Semiparametric identification of factor models for counterfactual analysis. Unpublished manuscript, University of Chicago, Department of Economics.

    Google Scholar 

  • Navarro, S. (2005). Understanding Schooling: Using Observed Choices to Infer Agent’s Information in a Dynamic Model of Schooling Choice When Consumption Allocation is Subject to Borrowing Constraints. Ph.D. Dissertation, University of Chicago, Chicago, IL.

    Google Scholar 

  • Neyman, J. (1923). On the application of probability theory to agricultural experiments. Essay on principles. Roczniki Nauk Rolniczych 10, 1–51. in Polish; edited and translated version of Sect. 9 by D.M. Dabrowska and T.P Speed (1990), Statistical Science, 5, 465–472.

    Google Scholar 

  • Pakes, A. (1986, July). Patents as options: Some estimates of the value of holding european patent stocks. Econometrica 54(4), 755–784.

    Google Scholar 

  • Pakes, A. and M. Simpson (1989). Patent renewal data. Brookings Papers on Economic Activity (Special Issue), 331–401.

    Google Scholar 

  • Pearl, J. (2000). Causality. Cambridge, England: Cambridge University Press.

    Google Scholar 

  • Quandt, R. E. (1958, December). ‘The estimation of the parameters of a linear regression system obeying two separate regimes’. Journal of the American Statistical Association 53(284), 873–880.

    Google Scholar 

  • Quandt, R. E. (1972, June). ‘A new approach to estimating switching regressions’. Journal of the American Statistical Association 67(338), 306–310.

    Google Scholar 

  • Ridder, G. (1986, April). An event history approach to the evaluation of training, recruitment and employment programmes. Journal of Applied Econometrics 1(2), 109–126.

    Google Scholar 

  • Ridder, G. (1990, April). The non-parametric identification of generalized accelerated failure-time models. Review of Economic Studies 57(2), 167–181.

    Google Scholar 

  • Robins, J. M. (1989). The analysis of randomized and non-randomized aids treatment trials using a new approach to causal inference in longitudinal studies. In L. Sechrest, H. Freeman, and A. Mulley (Eds.), Health Services Research Methodology: A Focus on AIDS, pp. 113–159. Rockville, MD: U.S. Department of Health and Human Services, National Center for Health Services Research and Health Care Technology Assessment.

    Google Scholar 

  • Robins, J. M. (1997). Causal inference from complex longitudinal data. In M. Berkane (Ed.), Latent Variable Modeling and Applications to Causality. Lecture Notes in Statistics, pp 69–117. New York: Springer-Verlag.

    Google Scholar 

  • Rosenzweig, M. R. and K. I. Wolpin (2000, December). Natural “natural experiments" in economics. Journal of Economic Literature 38(4), 827–874.

    Google Scholar 

  • Roy, A. (1951, June). Some thoughts on the distribution of earnings. Oxford Economic Papers 3(2), 135–146.

    Google Scholar 

  • Rubin, D. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology 66, 688–701.

    Google Scholar 

  • Rubin, D. B. (1986). Statistics and causal inference: Comment: Which ifs have causal answers. Journal of the American Statistical Association 81(396), 961–962.

    Article  Google Scholar 

  • Rust, J. (1987, September). Optimal replacement of GMC bus engines: An empirical model of Harold Zurcher. Econometrica 55(5), 999–1033.

    Google Scholar 

  • Rust, J. (1994). Structural estimation of Markov decision processes. In R. Engle and D. McFadden (Eds.), Handbook of Econometrics, pp. 3081–3143. New York: North-Holland.

    Google Scholar 

  • Sims, C. A. (1972, September). Money, income, and causality. American Economic Review 62(4), 540–552.

    Google Scholar 

  • Taber, C. R. (2000, June). Semiparametric identification and heterogeneity in discrete choice dynamic programming models. Journal of Econometrics 96(2), 201–229.

    Google Scholar 

  • Thurstone, L. L. (1930). The Fundamentals of Statistics. New York: The Macmillan Company.

    Google Scholar 

  • Urzua, S. (2005). Schooling choice and the anticipation of labor market conditions: A dynamic choice model with heterogeneous agents and learning. Unpublished manuscript, University of Chicago, Department of Economics.

    Google Scholar 

  • Van den Berg, G. J. (2001). Duration models: Specification, identification and multiple durations. In J. Heckman and E. Leamer (Eds.), Handbook of Econometrics, Volume 5 of Handbooks in Economics, pp. 3381–3460. New York: North-Holland.

    Google Scholar 

  • Van den Berg, G. J., A. Holm, and J. C. Van Ours (2002, November). Do stepping-stone jobs exist? Early career paths in the medical profession. Journal of Population Economics 15(4), 647–665.

    Google Scholar 

  • Van den Berg, G. J., B. Van der Klaauw, and J. C. Van Ours (2004, January). Punitive sanctions and the transition rate from welfare to work. Journal of Labor Economics 22(1), 211–241.

    Google Scholar 

  • Van der Laan, M. J. and J. M. Robins (2003). Unified Methods for Censored Longitudinal Data and Causality. New York: Springer-Verlag.

    Google Scholar 

  • Wolpin, K. I. (1984, October). An estimable dynamic stochastic model of fertility and child mortality. Journal of Political Economy 92(5), 852–874.

    Google Scholar 

  • Wolpin, K. I. (1987, July). Estimating a structural search model: The transition from school to work.Econometrica 55(4), 801–817.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Abbring, J.H., Heckman, J.J. (2008). Dynamic Policy Analysis. In: Mátyás, L., Sevestre, P. (eds) The Econometrics of Panel Data. Advanced Studies in Theoretical and Applied Econometrics, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75892-1_24

Download citation

Publish with us

Policies and ethics