Advertisement

Spatial Panel Econometrics

  • Luc Anselin
  • Julie Le Gallo
  • Hubert Jayet
Part of the Advanced Studies in Theoretical and Applied Econometrics book series (ASTA, volume 46)

Keywords

Spatial Error Panel Data Model Error Covariance Matrix Spatial Weight Matrix Spatial Error Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

references

  1. Anselin, L. (1988a). Spatial Econometrics: Methods and Models. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  2. Anselin, L. (1988b). A test for spatial autocorrelation in seemingly unrelated regressions. Economics Letters, 28:335–341.Google Scholar
  3. Anselin, L. (1990).Some robust approaches to testing and estimation in spatial econometrics.Regional Science and Urban Economics, 20:141–163.Google Scholar
  4. Anselin, L. (2001a). Rao’s score test in spatial econometrics. Journal of Statistical Planning and Inference, 97:113–139.Google Scholar
  5. Anselin, L. (2001b). Spatial econometrics. In Baltagi, Badi, editor, A Companion to Theoretical Econometrics, pages 310–330. Blackwell, Oxford.Google Scholar
  6. Anselin, L. (2002). Under the hood. Issues in the specification and interpretation of spatial regression models.Agricultural Economics, 27(3):247–267.Google Scholar
  7. Anselin, L. (2003). Spatial externalities, spatial multipliers and spatial econometrics. International Regional Science Review, 26(2):153–166.Google Scholar
  8. Anselin, L. and Bera, A. (1998). Spatial dependence in linear regression models with an introduction to spatial econometrics.In Ullah, Amman and Giles, David E.A., editors, Handbook of Applied Economic Statistics, pages 237–289. Marcel Dekker, New York.Google Scholar
  9. Anselin, L., Bera, A., Florax, Raymond J.G.M., and Yoon, M. (1996).Simple diagnostic tests for spatial dependence. Regional Science and Urban Economics, 26:77–104.CrossRefGoogle Scholar
  10. Anselin, L. and Florax, Raymond J.G.M. (1995). New Directions in Spatial Econometrics. Springer-Verlag, Berlin.Google Scholar
  11. Anselin, L., Florax, Raymond J.G.M., and Rey, Sergio J. (2004). Econometrics for spatial models, recent advances. In Anselin, Luc, Florax, Raymond J.G.M., and Rey, Sergio J., editors,Advances in Spatial Econometrics. Methodology, Tools and Applications,pages 1–25. Springer-Verlag, Berlin.Google Scholar
  12. Anselin, L. and Le Gallo, J. (2004). Panel Data Spatial Econometrics with PySpace. Spatial Analysis Laboratory (SAL). Department of Agricultural and Consumer Economics, University of Illinois, Urbana-Champaign, IL.Google Scholar
  13. Anselin, L. and Moreno, R. (2003). Properties of tests for spatial error components.Regional Science and Urban Economics, 33(5):595–618.CrossRefGoogle Scholar
  14. Anselin, L., Syabri, I., and Kho, Y. (2006). Geoda, an introduction to spatial data analysis. Geographical Analysis. 38(1):5–22.Google Scholar
  15. Arellano, M. (2003). Panel Data Econometrics. Oxford University Press, Oxford, United Kingdom.Google Scholar
  16. Baltagi, Badi H. (2001). Econometric Analysis of Panel Data (Second Edition). John Wiley & Sons, Chichester, United Kingdom.Google Scholar
  17. Baltagi, Badi H., Egger, P., and Pfaffermayr, M. (2006). A generalized spatial panel data model with random effects. Working paper, Syracuse University, Syracuse, NY.Google Scholar
  18. Baltagi, Badi H., Song, Seuck H., Jung, Byoung C., and Koh, W. (2007). Testing for serial correlation, spatial autocorrelation and random effects using panel data.Journal of Econometrics, 140(1):5–51.CrossRefGoogle Scholar
  19. Baltagi, Badi H., Song, Seuck H., and Koh, W. (2003). Testing panel data regression models with spatial error correlation. Journal of Econometrics, 117:123–150.CrossRefGoogle Scholar
  20. Banerjee, S., Carlin, Bradley P., and Gelfand, Alan E. (2004). Hierarchical Modeling and Analysis for Spatial Data. Chapman & Hall/CRC, Boca Raton, FL.Google Scholar
  21. Barry, Ronald P. and Pace, R. Kelley (1999). Monte Carlo estimates of the log determinant of large sparse matrices.Linear Algebra and its Applications, 289:41–54.CrossRefGoogle Scholar
  22. Bivand, R. (2002).Spatial econometrics functions in R: Classes and methods.Journal of Geographical Systems, 4:405–421.Google Scholar
  23. Brock, William A. and Durlauf, Steven N. (2001). Discrete choice with social interactions. Review of Economic Studies, 68(2):235–260.CrossRefGoogle Scholar
  24. Brueckner, Jan K. (2003). Strategic interaction among governments: An overview of empirical studies.International Regional Science Review, 26(2):175–188.CrossRefGoogle Scholar
  25. Burridge, P. (1980). On the Cliff-Ord test for spatial autocorrelation. Journal of the Royal Statistical Society B, 42:107–108.Google Scholar
  26. Case, Anne C. (1991). Spatial patterns in household demand. Econometrica, 59:953–965.Google Scholar
  27. Case, Anne C. (1992). Neighborhood influence and technological change. Regional Science and Urban Economics, 22:491–508.Google Scholar
  28. Case, Anne C., Rosen, Harvey S., and Hines, James R. (1993). Budget spillovers and fiscal policy interdependence: Evidence from the states.Journal of Public Economics, 52:285–307.CrossRefGoogle Scholar
  29. Casetti, E. (1997). The expansion method, mathematical modeling, and spatial econometrics.International Regional Science Review, 20:9–33.Google Scholar
  30. Chen, X. and Conley, Timothy G. (2001). A new semiparametric spatial model for panel time series. Journal of Econometrics, 105:59–83.CrossRefGoogle Scholar
  31. Cliff, A. and Ord, J. Keith (1981). Spatial Processes: Models and Applications. Pion, London.Google Scholar
  32. Coakley, J., Fuentes, A.-M., and Smith, R. (2002). A principal components approach to cross-section dependence in panels.Working Paper, Department of Economics, Birkbeck College, University of London, London, United Kingdom.Google Scholar
  33. Conley, Timothy G. (1999). GMM estimation with cross-sectional dependence. Journal of Econometrics, 92:1–45.CrossRefGoogle Scholar
  34. Conley, Timothy G. and Ligon, E. (2002). Economic distance, spillovers and cross country comparisons. Journal of Economic Growth, 7:157–187.CrossRefGoogle Scholar
  35. Conley, Timothy G. and Topa, G. (2002). Socio-economic distance and spatial patterns in unemployment. Journal of Applied Econometrics, 17:303–327.CrossRefGoogle Scholar
  36. Cressie, N. and Huang, H.-C. (1999). Classes of nonseparable spatio-temporal stationary covariance functions.Journal of the American Statistical Association, 94:1330–1340.CrossRefGoogle Scholar
  37. Cressie, N. (1993).Statistics for Spatial Data. Wiley, New York.Google Scholar
  38. Driscoll, John C. and Kraay, Aart C. (1998). Consistent covariance matrix estimation with spatially dependent panel data.The Review of Economics and Statistics, 80:549–560.CrossRefGoogle Scholar
  39. Druska, V. and Horrace, William C. (2004). Generalized moments estimation for spatial panel data: Indonesian rice farming.American Journal of Agricultural Economics, 86(1):185–198.CrossRefGoogle Scholar
  40. Dubin, R. (1988). Estimation of regression coefficients in the presence of spatially autocorrelated errors.Review of Economics and Statistics, 70:466–474.Google Scholar
  41. Dubin, R. (1995). Estimating logit models with spatial dependence. In Anselin, Luc and Florax, Raymond J.G.M., editors, New Directions in Spatial Econometrics, pages 229–242. Springer-Verlag, Berlin.Google Scholar
  42. , Elhorst, J. Paul (2001). Dynamic models in space and time. Geographical Analysis, 33:119–140.Google Scholar
  43. Elhorst, J. Paul (2003). Specification and estimation of spatial panel data models. International Regional Science Review, 26(3):244–268.Google Scholar
  44. Fazekas, I., Florax, R., and Folmer, H. (1994). On maximum likelihood estimators of parameters of spatio-temporal econometric models.Technical Report No. 109/1994, Kossuth University, Debrecen,Hungary.Google Scholar
  45. Florax, Raymond J.G.M. and Van Der Vlist, Arno J. (2003). Spatial econometric data analysis: Moving beyond traditional models. International Regional Science Review, 26(3):223–243.Google Scholar
  46. Fotheringham, A. Stewart, Brunsdon, C., and Charlton, M. (2002). Geographically Weighted Regression. John Wiley, Chichester.Google Scholar
  47. Gamerman, D., Moreira, Ajax R.B., and Rue, H. (2003). Space-varying regression models: Specifications and simulation. Computational Statistics & Data Analysis, 42(3):513–533.CrossRefGoogle Scholar
  48. Gelfand, Alan E., Kim, H.-J., Sirmans, C.F., and Banerjee, S. (2003). Spatial modeling with spatially varying coefficient processes. Journal of the American Statistical Association, 98:387–396.CrossRefGoogle Scholar
  49. Giacomini, R. and Granger, Clive W.J. (2004). Aggregation of space-time processes. Journal of Econometrics, 118:7–26.CrossRefGoogle Scholar
  50. Glaeser, Edward L., Sacerdote, Bruce I., and Scheinkman, Jose A. (2002).The social multiplier. Technical Report 9153, NBER, Cambridge, MA 02138.Google Scholar
  51. Haining, R. (1990). Spatial Data Analysis in the Social and Environmental Sciences. Cambridge University Press, Cambridge.Google Scholar
  52. Hsiao, C. (1986). Analysis of Panel Data. Cambridge University Press, Cambridge.Google Scholar
  53. Hsiao, C. and Pesaran, M. Hashem (2008). Random coefficient panel data models. In Matyas L. and Sevestre P., editors, The Econometrics of Panel Data. Kuwer Academic Publishers, Dordrecht.Google Scholar
  54. Hsiao, C., Pesaran, M. Hashem, and Tahmiscioglu, A. Kamil (2002). Maximum likelihood estimation of fixed effects dynamic panel models covering short time periods.Journal of Econometrics, 109:107–150.CrossRefGoogle Scholar
  55. Kapoor, M., Kelejian, Harry H., and Prucha, Ingmar R. (2007). Panel data models with spatially correlated error components. Journal of Econometrics, 140(1):97–130.CrossRefGoogle Scholar
  56. Kelejian, Harry H. and Prucha, I. (1998). A generalized spatial two stage least squares procedures for estimating a spatial autoregressive model with autoregressive disturbances. Journal of Real Estate Finance and Economics, 17:99–121.CrossRefGoogle Scholar
  57. Kelejian, Harry H. and Prucha, I. (1999). A generalized moments estimator for the autoregressive parameter in a spatial model.International Economic Review, 40:509–533.CrossRefGoogle Scholar
  58. Kelejian, Harry H. and Robinson, Dennis P. (1993). A suggested method of estimation for spatial interdependent models with autocorrelated errors, and an application to a county expenditure model. Papers in Regional Science, 72:297–312.Google Scholar
  59. , Kelejian, Harry H. and Robinson, Dennis P. (1995). Spatial correlation: A suggested alternative to the autoregressive model.In Anselin, Luc and Florax, Raymond J.G.M., editors, New Directions in Spatial Econometrics, pages 75–95. Springer-Verlag, Berlin.Google Scholar
  60. Kelejian, Harry H. and Robinson, Dennis P. (1998). A suggested test for spatial autocorrelation and/or heteroskedasticity and corresponding Monte Carlo results. Regional Science and Urban Economics, 28:389–417.CrossRefGoogle Scholar
  61. Lee, L.-F. (2002). Consistency and efficiency of least squares estimation for mixed regressive, spatial autoregressive models.Econometric Theory, 18(2):252–277.Google Scholar
  62. Lee, L.-F. (2003). Best spatial two-stage least squares estimators for a spatial autoregressive model with autoregressive disturbances. Econometric Reviews, 22:307–335.Google Scholar
  63. Magnus, J. (1978). Maximum likelihood estimation of the GLS model with unknown parameters in the disturbance covariance matrix.Journal of Econometrics, 7:281–312.Corrigenda, Journal of Econometrics 10, 261.Google Scholar
  64. Manski, Charles F. (1993). Identification of endogenous social effects: The reflexion problem. Review of Economic Studies, 60:531–542.CrossRefGoogle Scholar
  65. Manski, Charles F. (2000). Economic analysis of social interactions. Journal of Economic Perspectives, 14(3):115–136.CrossRefGoogle Scholar
  66. Mardia, K.V. and Goodall, C. (1993). Spatio-temporal analyses of multivariate environmental monitoring data. In Patil, G.P. and Rao, C.R., editors, Multivariate Environmental Statistics, pages 347–386. Elsevier, Amsterdam.Google Scholar
  67. Mardia, K.V. and Marshall, R.J. (1984). Maximum likelihood estimation of models for residual covariance in spatial regression. Biometrika, 71:135–146.CrossRefGoogle Scholar
  68. Ord, J. Keith (1975). Estimation methods for models of spatial interaction. Journal of the American Statistical Association, 70:120–126.Google Scholar
  69. Pace, R. Kelley and Barry, R. (1997). Sparse spatial autoregressions. Statistics and Probability Letters, 33:291–297.CrossRefGoogle Scholar
  70. Paelinck, J. and Klaassen, L. (1979). Spatial Econometrics. Saxon House, Farnborough.Google Scholar
  71. Pesaran, M. Hashem (2002). Estimation and inference in large heterogenous panels with cross section dependence. DAE Working Paper 0305 and CESifo Working Paper no. 869, University of Cambridge, Cambridge, United Kingdom.Google Scholar
  72. Pesaran, M. Hashem (2004). General diagnostic tests for cross section dependence in panels. Working paper, University of Cambridge, Cambridge, United Kingdom.Google Scholar
  73. Rey, Sergio J. and Montouri, Brett D. (1999). US regional income convergence: A spatial econometrics perspective. Regional Studies, 33:143–156.CrossRefGoogle Scholar
  74. Smirnov, O. and Anselin, L. (2001). Fast maximum likelihood estimation of very large spatial autoregressive models: A characteristic polynomial approach. Computational Statistics and Data Analysis, 35:301–319.CrossRefGoogle Scholar
  75. Stein, Michael L. (1999). Interpolation of Spatial Data, Some Theory for Kriging. Springer-Verlag, New York.Google Scholar
  76. Topa, G. (2001). Social interactions, local spillover and unemployment. Review of Economic Studies, 68(2):261–295.Google Scholar
  77. Upton, Graham J. and Fingleton, B. (1985). Spatial Data Analysis by Example. Vol. 1: Point Pattern and Quantitative Data. Wiley, New York.Google Scholar
  78. Waller, L., Carlin, B., and Xia, H. (1997a). Structuring correlation within hierarchical spatio-temporal models for disease rates. In Grègoire, T., Brillinger, D., Russek-Cohen, P., Warren, W., and Wolfinger, R., editors, Modeling Longitudinal and Spatially Correlated Data, pages 309–319. Springer-Verlag, New York.Google Scholar
  79. Waller, L., Carlin, B., Xia, H., and Gelfand, A. (1997b). Hierarchical spatio-temporal mapping of disease rates. Journal of the American Statistical Association, 92:607–617.CrossRefGoogle Scholar
  80. Wikle, Christopher K., Berliner, L. Mark, and Cressie, N. (1998). Hierarchical Bayesian space-time models. Environmental and Ecological Statistics, 5:117–154.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Luc Anselin
    • 1
  • Julie Le Gallo
    • 2
  • Hubert Jayet
    • 3
  1. 1.School of Geographical SciencesArizona State UniversityTempeUSA
  2. 2.CRESE, Université de Franche-ComtéFrance
  3. 3.Faculty of Economics and Social SciencesEQUIPPE, University of Science and Technology of LilleFrance

Personalised recommendations