Using Fisher Kernel on 2D-Shape Identification

  • Carlos M. Travieso
  • Juan C. Briceño
  • Miguel A. Ferrer
  • Jesús B. Alonso
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4739)


This paper proposes to use the Fisher kernel for planar shape recognition. A synthetic experiment with artificial shapes has been built. The difference among shapes is the number of vertexes, links between vertexes, size and rotation. The 2D-shapes are parameterized with sweeping angles in order to obtain scale and rotation invariance. A Hidden Markov Model is used to obtain the Fisher score which feeds the Support Vector Machine based classifier. Noise has been added to the shapes in order to check the robustness of the system against noise. Hit ratio score over 99%, has been obtained, which shows the ability of the Fisher kernel tool for planar shape recognition.


2D-shape recognition 2D-shape Hidden Markov Models (HMM) Support Vector Machines (SVM) Fisher Kernel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Loncaric, S.: A Survey of Shape Analysis Techniques. Pattern Recognition Nº(8), 983–1001 (1998)CrossRefGoogle Scholar
  2. 2.
    Rabiner, L.R.: A tutorial on Hidden Markov models and Selected Applications in Speech Recognition. Proceedings of the IEEE 77(Nº2), 257–286 (1989)CrossRefGoogle Scholar
  3. 3.
    Müller, K.R., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B.: An Introduction to Kernel-Based Learning Algorithms. IEEE Transactions on Neural Networks 12(Nº 2), 181–201 (2001)CrossRefGoogle Scholar
  4. 4.
    Cai, J., Liu, Z.Q.: Hidden Markov Models with Spectral Features for 2D Shape Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 23 (Nº12), 1454–1458 (2001)CrossRefGoogle Scholar
  5. 5.
    Bicego, M., Murino, V.: Investigating Hidden Markov Models Capabilities in 2D Shape Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(Nº 2), 281–286 (2004)CrossRefGoogle Scholar
  6. 6.
    Burges, C.: A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery nº(2), 121–167 (1998)CrossRefGoogle Scholar
  7. 7.
    Jaakkola, T., Diekhans, M., Haussler, D.: A discriminative framework for detecting remote protein homologies. Journal of Computational Biology Nº(1-2), 95–114 (2000)CrossRefGoogle Scholar
  8. 8.
    Briceño, J.C., Travieso, C.M., Ferrer, M.A., Alonso, J.B., Briceño R.D.: A genus recognition system for the Costa Rica Lauraceae Family, using a Support Vector Machine. XXIII Conferencia Latinoamericana de Informática, p. 120 (abstract) (2006)Google Scholar
  9. 9.
    Rabinier, L., Juang, B.H.: Fundamentals of Speech Recognition. Prentice-Hall, Englewood Cliffs, New Jersey (1993)Google Scholar
  10. 10.
    David, S., Ferrer, M.A., Travieso, C.M., Alonso, J.B.: gpdsHMM: A Hidden Markov Model Toolbox in the Matlab Environment. CSIMTA, Complex Systems Intelligence and Modern Technological Applications, 476-479 (2004)Google Scholar
  11. 11.
    Joachims, T.: Making large-Scale SVM Learning Practical. Advances in Kernel Methods - Support Vector Learning. MIT Press, Cambridge (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Carlos M. Travieso
    • 1
  • Juan C. Briceño
    • 2
  • Miguel A. Ferrer
    • 1
  • Jesús B. Alonso
    • 1
  1. 1.CEntro Tecnológico para la Innovación en Comunicaciones (CETIC) Dpto. de Señales y Comunicaciones, Universidad de Las Palmas de Gran Canaria Campus de Tafira, E35017, Las Palmas de Gran CanariaSpain
  2. 2.Escuela de Ciencias de la Computación e Informática. Universidad de Costa Rica. Sede “Rodrigo Facio Brenes”, Montes de Oca, 2060, San José, Costa Rica 

Personalised recommendations