Advertisement

A Formal Foundation for Knowledge Integration of Defficent Information in the Semantic Web

  • Joaquín Borrego-Díaz
  • Antonia M. Chávez-González
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4739)

Abstract

Maintenance of logical robustness in Information Integration represents a major challenge in the envisioned Semantic Web. In this framework, it is previsible unprecise information (with respect to an ontology) is retrieved from some resources. The sound integration of such information is crucial to achieve logical soundness. We present a data-driven approach to classify that knowledge by means of the cognitive entropy of the possible robust ontology extensions and data.

Keywords

Constraint Satisfaction Problem Knowledge Integration Formal Foundation Concept Taxonomy Cognitive Support 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alonso-Jiménez, J.A., Borrego-Dáaz, J., Chávez-González, A.M., Martńn-Mateos, F.J.: Foundational Challenges in Automated Data and Ontology Cleaning in the Semantic Web. IEEE Intelligent Systems 21(1), 42–52 (2006)CrossRefGoogle Scholar
  2. 2.
    Borrego-Díaz, J., Chávez-González, A.M.: Controlling Ontology Extension by Uncertain Concepts Through Cognitive Entropy. In: Uncertain Reasoning for the Semantic Web, URSW 2005, CEUR, vol. 173, pp. 56–66 (2005)Google Scholar
  3. 3.
    Borrego-Díaz, J., Chávez-González, A.M.: Extension of Ontologies Assisted by Automated Reasoning Systems. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2005. LNCS, vol. 3643, pp. 253–257. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Borrego-Díaz, J., Chávez-González, A.M.: Visual Ontology Cleaning: Cognitive Principles and Applicability. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 317–331. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Brewster, C., Alani, H., Dasmahapatra, S., Wilks, Y.: Data Driven Ontology Evaluation, Int. Conf. Lang. Resources and Evaluation (2004), http://eprints.ecs.soton.ac.uk/archive/00009062/01/BrewsterLREC-final.pdf
  6. 6.
    Chávez-González, A.: Mereotopological Automated Reasoning for Ontology Cleaning, Ph.D. Thesis, University of Seville (2005)Google Scholar
  7. 7.
    Cohn, A.G., Bennett, B., Gooday, J.M., Gotts, N.M.: Representing and Reasoning with Qualitative Spatial Relations about Regions. In: Stock, O. (ed.) Spatial and Temporal Reasoning, ch. 4, Kluwer, Dordrecth (1997)Google Scholar
  8. 8.
    Daemi, A., Calmet, J.: From Ontologies to Trust through Entropy. In: Proc. of the Int. Conf. on Advances in Intelligent Systems - Theory and Applications (2004)Google Scholar
  9. 9.
    Grohe, M., Segoufin, L.: On First-Order Topological Queries. ACM Trans. Comput. Log. 3(3), 336–358 (2002)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Motta, E., Buckingham, S., Domingue, J.: Ontology-driven document enrichment: principles, tools and applications. Int. J. Human-Computer Studies 52(6), 1071–1109 (2000)CrossRefGoogle Scholar
  11. 11.
    Renz, J.R., Nebel, B.: On the Complexity of Qualitative Spatial Reasoning: A Maximal Tractable Fragment of the Region Connection Calculus. Artificial Intelligence 108, 69–128 (1999)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Joaquín Borrego-Díaz
    • 1
  • Antonia M. Chávez-González
    • 1
  1. 1.Departamento de Ciencias de la Computación e Inteligencia Artificial., E.T.S. Ingeniería Informática-Universidad de Sevilla., Avda. Reina Mercedes s.n. 41012-SevillaSpain

Personalised recommendations