Skip to main content

Hematopoietic System

  • Chapter
  • First Online:
ALERT • Adverse Late Effects of Cancer Treatment

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

Radiation effects on the hematopoietic system affect not only blood forming cells but also stromal elements. Toxicity to marrow from radiation has many parallels with chemotherapy—induced toxicity, and additive or synergistic effects can occur. Acute toxicity from radiation to marrow can be manifest by decline in peripheral blood counts, and the degree of toxicity is affected by radiation dose, dose rate, and treatment volume. In humans, marrow ablation due to total body irradiation has been difficult to study, since this is used only in the setting of stem cell transplantation which ameliorates some but not all of the marrow toxicity. Chronic toxicity to marrow from radiation is dependent on fraction of the marrow organ irradiated and total amount delivered. Patterns of regeneration have been well studied in murine and rabbit models. Measures to overcome marrow toxicity from radiation include chemical radioprotectors, hematopoietic growth factors, and potential amelioration of marrow stromal damage through cytokine support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ARS:

Acute radiation syndrome

BMT:

bone marrow transplantation

BFU-E:

Burst-forming units for erythrocytes

CFU:

Colony-forming units

LD:

Lethal dose

ME:

Microenvironment

MnSOD:

Manganese superoxide dismutase

SCF:

Stem cell factor

SDF:

Stroma derived factor

TPO:

Thrombopoietin

TBI:

Total body irradiation

DOTMP:

166Ho-1, 4, 7, 10-tetraazacyclododecane-1,4,7,10-tetramethylene-phosphonic acid

References

  • Abboud CN, Lichtman MA (2006) Structure of the marrow and the hematopoietic microenvironment. In: Lichtman MA2006 Beutler L, Kipps TJ, Seligsch U, Kashansky K, Prchal JT (eds) Williams hematology. McGraw-Hill Medical, New York, pp 35–72

    Google Scholar 

  • Abrams R, Lichter A, Bromer R et al (1985) The hematopoietic toxicity of regional radiation therapy. Correlations for combined modality therapy with systemic chemotherapy. Cancer 55:1429

    PubMed  CAS  Google Scholar 

  • Ahdjoudj S, Fromique O, Mariw PJ (2004) Plasticity and regulation of human bone marrow stromal osteoprogenitor cells: potential implication in the treatment of age-related bone loss. Histol Histopathol 19:151–157

    PubMed  CAS  Google Scholar 

  • Alberico T, Ihle J, Liang C et al (1987) Stromal growth factor production in irradiated lectin exposed long-term murine bone marrow cultures. Blood 69:1120

    PubMed  CAS  Google Scholar 

  • Almohamad K, Thiry A, Hubin F, Belaid Z, Humblet C, Boniver J, Defresne MP (2003) Marrow stromal cell recovery after radiation-induced aplasia in mice. Int J Radiat Biol 79:259–267

    PubMed  CAS  Google Scholar 

  • Antonadou D, Petridis A, Synodinou M, Throuvalas N, Bolanos N, Veslemes M, and Sagriotis A (2003). Amifostine reduces radiochemotherapy-induced toxicities in patients with locally advanced non-small cell lung cancer. Semin Oncol 6(suppl 18):2–9

    Google Scholar 

  • Appelbaum F (1989) The clinical use of hematopoietic growth factors. Semin Hematol 26(Suppl):7

    PubMed  CAS  Google Scholar 

  • Atkinson H (1962) bone marrow distribution as a factor in estimating radiation to the blood forming organs: a survey of present knowledge. J Coll Radiol Aust 6:149–154

    PubMed  CAS  Google Scholar 

  • Bergsagel D (1971) Total body irradiation for myelomatosis. Br Med J ii:325

    Google Scholar 

  • Bertho JM, Demarquay C, Frick J, Joubert C, Arenales S, Jacquent N, Sorokine-Durm I, Chau Q, Lopez M, Aliqueperse J, Gorin NC, Gourmelon P (2001) Level of Flt3-ligand in plasma: a possible new bio-indicator for radiation-induced aplasia. Int J Radiat Biol 77:703–712

    PubMed  CAS  Google Scholar 

  • Bertho JM, Frick J, Prat M, Demarquay C, Dudoignon N, Trompier F, Gorin NC, Thierry D, Gourmelon P (2005) Comparison of autoloogus cell therapy and granulocyte-colony stimulating factor (G-CSF) injection vs. G-CSF injection alone for the treatment of acute radiation syndrome in a non-human primate model. Int J Radiat Oncol Biol Phys 63:911–920

    Google Scholar 

  • Beutler E (1993) Platelet transfusion: the 20,000/microL trigger. Blood 82:1411–1413

    Google Scholar 

  • Bierkens J, Hendry J, Testa N (1989) The radiation response and recovery of bone marrow stroma with particular reference to long-term bone marrow cultures. Eur J Haematol 43:95

    PubMed  CAS  Google Scholar 

  • Bonnet D (2002) Haematopoietic stem cells. J Pathol 197:430–440

    PubMed  Google Scholar 

  • Bonnet D (2003) Biology of human bone marrow stem cells. Clin Exp Med 3:140–149

    Google Scholar 

  • Botnik LE, Hannon EC, Hellman S (1979) Late effects of cytotoxic agents on the normal tissue of mice. Front Radiat Ther Oncol 13:36

    Google Scholar 

  • Bunjes D (2002) 133Re-labeled anti-CD66 monoclonal antibody in stem cell transplantation for patients with high-risk acute myeloid leukemia. Leuk Lymphoma 43:2125–2131

    PubMed  CAS  Google Scholar 

  • Burke JM, Caron PC, Papadopoulos EB, Divgi CR, Sgouros G, Panageas KS, Finn RD, Larson SM, O’Reilly RJ, Scheinberg DA, Jurcic JG (2003) Cytoreduction with iodine-131-anti-CD33 antibodies before bone marrow transplantation for advanced myeloid leukemias. bone marrow Transpl 32:549–556

    Google Scholar 

  • Burke JM, Caron PC, Papadopoulos EB et al (2003) Cytoreduction with iodine-131-anti-CD33 antibodies before bone marrow transplantation for advanced myeloid leukemias. bone marrow Transpl 32:549–556

    CAS  Google Scholar 

  • Calvi LM, Adams FB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divierti P, Bringhurst FR, Milner LA, Kronenberg HM, Scadden DT (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846

    Google Scholar 

  • Carbell S, Chaffey J, Rosenthal D et al (1979) Results of total body irradiation in the treatment of advanced non-Hodgkin’s lymphoma. Cancer 43:994

    Google Scholar 

  • Casamassima F, Ruggkiero C, Carmaella D et al (1989) Hematopoietic bone marrow recovery after radiation therapy: MRI evaluation. Blood 73:1677–1681

    PubMed  CAS  Google Scholar 

  • Chertkov J, Drize N, Gurevitch O (1983) Hemopoietic stromal precursors in long-term culture of bone marrow. II. Significance of initial packing for creating a hemopoietic microenvironment and maintaining stromal precursors in the culture. Exp Hematol 11:243

    PubMed  CAS  Google Scholar 

  • Chute JP, Clark W, Saini A, Wells M, Harlan D (2002) Rescue of hematopoieitc stem cells following high-dose radiation injury using ex vivo cultures on endothelial monolayers. Mil Med 167:74–77

    PubMed  Google Scholar 

  • Chute JP, Fung J, Muramoto G, Erwin R (2004) Ex vivo culture rescues hematopoieitic stem cells with long-term repopulating capacity following harvest from lethally irradiated mice. Exp Hematol 32:308–317

    PubMed  Google Scholar 

  • Clark SC, Kamen R (1987) The human hematopoietic colony-stimulating factors. Science 236:1229

    PubMed  CAS  Google Scholar 

  • Constine L, Zagars G, Rubin P, Kligerman M (1986) Protection by WR-2721 of human bone marrow function following irradiation. Int J Radiat Oncol Biol Phys 12:1505

    PubMed  CAS  Google Scholar 

  • Constine LS, Harwell S, Kong P et al (1991) Interleukin 1 alpha stimulates hemopoiesis but not tumor cell proliferation and protects mice from lethal total body irradiation. Int J Radiat Oncol Biol Phys 20:447

    PubMed  CAS  Google Scholar 

  • Crawford J (2003) Once-per-cycle pegfilgrastim (Neulasta) for the management of chemotherapy-induced neutropenia. Semin Oncol 30:24–30

    PubMed  CAS  Google Scholar 

  • Cristy M (1981) Active bone marrow distribution as a function of age in humans. Phys Med Bio 26:89–400

    Google Scholar 

  • Croizat H, Frindel E, Tubiana M (1976) Abscopal effect of irradiation on hematopoietic stem cells of shielded bone marrow. Role of migration. Int J Radiat Oncol Biol Phys 30:347

    CAS  Google Scholar 

  • Croizat H, Frindel E, Tubiana M (1979) Long term radiation effects on the bone marrow stem cells of C3H mice. Int J Radiat Oncol Biol Phys 36:91

    CAS  Google Scholar 

  • Custer RP, Ahlfedt FE (1932) Studies on the structure and function of bone marrow II. Variations in cellularity in various bones with advancing years of life and their relative response to stimuli. J Lab Clin Med 17:960

    Google Scholar 

  • Dale DC, McCarter GC, Crawford J, and Lyman GH (2003) Myelotoxicity and dose intensity of chemotherapy: reporting practices from randomized clinical trials. J Natl Compr Cancer Netw 1:440–454

    Google Scholar 

  • Daniak N (2002) Hematologic consequence of exposure to ionizing radiation. Exp Hematol 30:513–528

    Google Scholar 

  • David D (2003) Current management of chemotherapy-induced neutropenia: the role of colony-stimulating factors. Seminar in Oncol 30(suppl 13):3–9

    Google Scholar 

  • David Dale (2003b) Current management of chemotherapy-induced neutropenia: the role of colony-stimulating factors. Semin Oncol 30:3–9

    Google Scholar 

  • Demsia G, Vlastos D, Mattopoulos DP (2004) Effect of 910-MHz electromagnetic field on rat bone marrow. Sci World J 2:48–54

    Google Scholar 

  • DeRaeve H, Van Marck E, Van Camp B, Vanderkerken K (2004) Angiogenesis and the role of bone marrow endothelial cells in haematological malignancies. Histol Histopathol 19:935–950

    CAS  Google Scholar 

  • Devita VT, Lawrence, TS, Rosenberg SA, et al (eds) (2008) Devita, Hellman, and Rosenberg's Cancer: Principles and Practice of Oncology, 8th edn. Lippincott Williams & Wilkins, Philadelphia, p 2302

    Google Scholar 

  • Dexter T (1988) Recent advances in the knowledge of the hemopoietic system. Possible ways of correcting long-term damage. In: Testa N, Gale R (eds) Hematopoiesis: long-term effects of chemotherapy and radiation. Marcel Dekker, New York p 389

    Google Scholar 

  • Dharmarajan TS, Widjaja D (2008) Adverse consequences with use of erythropoiesis-stimulating agents in anemia prompt release of guidelines to ensure safe use and maximize benefit. Geriatrics 63:13–29

    PubMed  CAS  Google Scholar 

  • Domenech J, Roingeard F, Binet C (1997) The mechanisms involved in the impairment of hematopoiesis after autologous bone marrow transplantation. Leuk Lymphoma 24:239–256

    PubMed  CAS  Google Scholar 

  • Drouet M, Mourcin F, Grenier N, Leroux V, Denis J, Mayol J_F, Thulier P, Lataillade J–J, Herodin F (2004) Single administration of stem cell factor, FLT-3 ligand, megakaryocyte growth and development factor, and interleukin-3 in combination soon after irradiation prevents nonhuman primates from myelosuppression: long-term follow-up of hematopoiesis. Blood 103:878–885

    Google Scholar 

  • Drouet M, Mourcin F, Grenier N, Delaunay C, Mayol JF, Lataillade JJ, Peinnequin A, Herodin F (2005) Mesenchymal stem cells rescue CD34 + cells from radiation-induced apoptosis and sustain hematopoieitc reconstitution after coculture and cografting in lethally irradiated baboons: is autologous stem cell therapy in nuclear accident settings hype or reality? bone marrow Transpl 35:1201–1209

    CAS  Google Scholar 

  • Du N, Feng K, Luo C, Li L, Bai C, Pei X (2003) Radioprotective effect of FLT3 ligand expression regulated by Egr-1 regulated element on radiation injury of SCID mice. Exp Hematol 31:191–196

    PubMed  CAS  Google Scholar 

  • Epperly MW, Bernarding M, Gretton J, Jefferson M, Nie S, Greenberger JS (2003) Overexpression of the transgene for manganese superoxide dismutase (MnSOD) in 32D cl3 cells prevents apoptosis induction by TNF-α, IL-3 withdrawl, and ioinizing radiation. Exp Hematol 31:465–474

    PubMed  CAS  Google Scholar 

  • Epperly MW, Cao S, Zhang X, Franicola D, Shen H, Greenberger EE, Epperly LD, Greenberger JS (2007) Increased longevity of hematopoiesis in continuous bone marrow cultures derived from NOS1 (nNOS, mtNOS) homozygous recombinant negative mice correlates with radioresistance of hematopoietic and marrow stromal cells. Exp Hematol 35:137–145

    PubMed  CAS  Google Scholar 

  • Esbrit P, Alvarez-Arroyo MV, DeMigule F, Martin O, Martinez ME, Carameio C (2000) C-terminal parathyroid hormone-related protein increases vascular endothelial growth factor in human osteoblastic cells. J Am Soc Nephrol 11:1085–1092

    PubMed  CAS  Google Scholar 

  • Farese AM, Hunt P, Brab LB, MacVittie TJ (1996) Combined administration of recombinant human megakaryocyte growth and development factor and granulocyte colony-stimulating factor enhances multilineage hematopoietic reconstitution in nonhuman primates after radiation-induced marrow aplasia. J Clin Invest 97:2145–2151

    PubMed  CAS  PubMed Central  Google Scholar 

  • Farese AM, Smith WG, Giri JG, Siegel N, McKearn JP, MacVittie TJ (2001) Promegapoietin-la, an engineered chimeric IL-3 and Mpl-L receptor agonist, stimulates hematopoietic recovery in conventional and abbreviated schedules following radiation-induced myelosupression in nonhuman primates. Stem Cells 19(4):329–338

    PubMed  CAS  Google Scholar 

  • Francois S, Bensidhoum M, Mouiseddine M, Mazurier C, Allenet S, Semont A, Frick J, Sache A, Bouchet S, Thierry D, Gourmelon P, Gorin NC, Chapel A (2005) Local irradiation not only induces homing of human mesenchymal stem cells at exposed sites but promotes their widespread engraftment to multiple organs: a study of their quantitative distribution after irradiation damage. Stem cells 2006(24):1020–1029

    Google Scholar 

  • Fried N, Musseini S, Knopse W, Trobaugh F (1973) Studies on the source of hematopoietic tissue in the marrow of subcutaneously implanted femurs. Exp Hematol 1:29

    PubMed  CAS  Google Scholar 

  • Fried W, Chamberlin W, Kedo A, Varone J (1976) Effects of radiation on hematopoietic stroma. Exp Hematol 4:310

    PubMed  CAS  Google Scholar 

  • Gale RP (1985) Antineoplastic chemotherapy myelosuppression: Mechanisms and new approaches (Keynote address). Exp Hematol 13:3

    PubMed  CAS  Google Scholar 

  • Gale R (1988) Myelosuppressive effects of antineoplastic chemotherapy. In: Testa N, Gale R (eds) Hematopoiesis: long-term effects of chemotherapy and radiation. Marcel Dekker, New York, p 63

    Google Scholar 

  • Galotto M, Berisso G, Delfino L, Podesta M, Ottaggio L, Dallorso S, Dufour C, Ferrara GB, Abbondandolo A, Dini G, Bacigalupo A, Cancedda R, Quarto R (1999) Stromal damage as consequence of high-dose chemo/radiotherapy in bone marrow transplant recipients. Exp Hematol 27:1460–1466

    Google Scholar 

  • Gardner RV, Begue R, McKinnon E (2001) The effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on primitive hematopoietic stem cell (PHSC) function and numbers, after chemotherapy. Exp Hematol 29:1053–1059

    PubMed  CAS  Google Scholar 

  • Giovanetti A, Deshpande T, Basso E (2003) Persistence of genetic damage in mice exposed to low dose of X-rays. Int J Radiat Biol 84:227–235

    Google Scholar 

  • Giralt SA (2003) Is reduced-intensity conditioning the standard of care in the transplant setting? Clin Adv Hematol Oncol 6:337–339

    Google Scholar 

  • Giralt S, Bensinger W, Goodman M, Podoloff D, EAry J, Wendt R, Alexanina R, Weber D, Maloney D, Homberg L, Rajandran J, Breitz H, Ghalie R, Champlin R (2003) 166Ho-DOTMP plus melphalan followed by peripheral blood stem cell transplantation in patients with multiple myeloma: results of two phase ½ trials. Blood 102:2684–2691

    Google Scholar 

  • Goytisolo FA, Samper E, Martin-Caballero J, Finnon P, Herrera E, Flores JM, Bouffler SD, Blasco MA (2000) Short telomeres result in organismal hypersensitivity to ionizing radiation in mammals. J Exp Med 192:1625–1636

    Google Scholar 

  • Greenberger J, Klassen V, Kase K et al (1984) Effects of low dose rate irradiation on plateau phase bone marrow stromal cells in vitro: Demonstration of a new form of non-lethal, physiologic damage to support hematopoietic stem cells. Int J Radiat Oncol Biol Phys 10:1027

    PubMed  CAS  Google Scholar 

  • Greenberger J, Fitzgerald T, Klassen V et al (1988) Alteration in hematopoietic stem cell seeding and proliferation by both high and low dose rate irradiation of bone marrow stromal cells in vitro. Int J Radiat Oncol Biol Phys 14:85

    PubMed  CAS  Google Scholar 

  • Gualtieri R (1987) Consequences of extremely high doses of irradiation on bone marrow stromal cells and the release of hematopoietic growth factors. Exp Hematol 15:952

    PubMed  CAS  Google Scholar 

  • Gualtieri R, McGraw J (1985) bone marrow stromal cells survive mega-dose irradiation and continue to produce hematopoietic growth factor(s). Blood 66(Suppl 1):152

    Google Scholar 

  • Gualtieri R, Shadduck R, Baker D, Quesen-berry P (1984) Hematopoietic regulator factors produced in long-term murine bone marrow cultures and the effect of in vitro irradiation. Blood 64:516

    PubMed  CAS  Google Scholar 

  • Hao J, Sun L, Huang H et al (2004) Effects of recombinant human interleukin 11 on thrombocytopenia and neutropenia in irradiated rhesus monkeys. Radiat Res 162:157–163

    PubMed  CAS  Google Scholar 

  • Hartlye C, Elliott S, Begley CG, McElroy P, Sutherland W, Khaja R, Heatherington AC, Graves T, Schultz H, Del Castillo J, Molineux G (2003) Kinetics of haematopoietic recovery after dose-intensive chemo/radiotherapy in mice: optimized erythroid support with darbepoietin alpha. Br J Haematol 122:623–636

    Google Scholar 

  • Hashimoto M (1960) The distribution of active marrow in the bones of the normal adult. Kyushu J Med Sci 11:103–111

    Google Scholar 

  • Haus E (2002) Chronobiology of the mammalian response to ionizing radiation. Potential applications in oncology. Chronobiol Int 19:77–100

    PubMed  Google Scholar 

  • Hayman JA, Callahan JW, Herschtal A, Everitt S, Binns DS, Hicks RJ, MacManus M (2011) Distribution of proliferating bone marrow in adult cancer patients determined using FLT-PET imaging. Int J Radiat Oncol 79:847–852

    CAS  Google Scholar 

  • Hellman S, Hannon E (1976) Effects of adriamycin on the radiation response of murine hematopoietic stem cells. Radiat Res 67:162

    PubMed  CAS  Google Scholar 

  • Hendry J (1985) The cellular basis of long-term marrow injury after irradiation. Radiother Oncol 3:331

    PubMed  CAS  Google Scholar 

  • Henry MK, Lynch jt, Eapen AK, Quelle FW (2001) DNA damage-induced cell-cycle arrest of hematopoeitic cells is overridden by activation of the PI-3 kinase/Akt signaling pathway. Blood 98:834–481

    Google Scholar 

  • Herodin F, Drouet M (2002) Autologous cell therapy as a new approach to treatment-induced bone marrow aplasia: preliminary study in a baboon model. Cn J Physiol Pharacol 80:710–716

    CAS  Google Scholar 

  • Herodin F, Drouet M (2005) Cytokine-based treatment of accidentally irradiated victims and new approaches. Exp Hematol 33:1071–1080

    Google Scholar 

  • Herodin F, Grenier N, Drouet M (2007) Revisiting therapeutic strategies in radiation casualties. Exp Hematol 35(4 Suppl 1):28–33

    PubMed  CAS  Google Scholar 

  • Hewitt HB (1973) Rationalizing radiotherapy: some historical aspects of the endeavor. Br J Radiat 46:917–926

    CAS  Google Scholar 

  • Hoagland HC (1982) Hematologic complications of cancer chemotherapy. Semin Oncol 1:95–102

    Google Scholar 

  • Hodgson G, Bradley T (1979) Properties of stem cells surviving 5-fluorouracil treatment: evidence for a pre-CFU-S cell? Nature 281:381

    PubMed  CAS  Google Scholar 

  • Hoppe R, Portlock C, Glatstein E et al (1979) Alternating chemotherapy and irradiation in the treatment of advanced Hodgkin’s disease. Cancer 43:472

    PubMed  CAS  Google Scholar 

  • Hosseinimehr SJ, Zakaryase V, Froughizadeh M (2006) Oral oxymetholone reduces mortality induced by gamma irradiation in mice through stimulation of hematopoietic cells. Mol Cell Biochem 287:193–199

    PubMed  CAS  Google Scholar 

  • Hreschchyshyn M (1976) Results of the Gynecologic Oncology Group trials on ovarian cancer: a preliminary report. Symposium on ovarian carcinoma. NCI Monogr 42:155

    Google Scholar 

  • Hunter MG, Bawden L, Brotherton D, Craig S, Cribbes S, Czaplewski LG, Dexter TM, Drummond AH, Geraing AH, Heyworth CM, Lord BI, McCourt M, Varley PG, Wood LM, Edwards RM, Lewis PJ (1995) BB-10010: an active variant of human macrophage inflammatory protein—alpha with improved pharmaceutical properties. Blood 86:4400–4408

    PubMed  CAS  Google Scholar 

  • Husband JES, Reznek RH (1998) Imaging in oncology. Isis Med Media, Oxford

    Google Scholar 

  • Jagetia GC (2007) Radioprotection and radiosensitization by curcumin. Adv Exp Med Biol 595:301–320

    PubMed  Google Scholar 

  • Jagetia GC, Baliga MS, Venkatesh P, Uloor JN (2003) Influence of ginger rhizome (Zingiber officnale Rosc) on survival, glutathione and lipid peroxidation in mice after whole-body exposure to gamma radiation. Radiat Res 160:784–792

    Google Scholar 

  • Juweid M, Sharkey RM, Siegel JA, Behr T, Goldenberg DM (1995) Estimates of red marrow dose by sacral scintigraphy in radioimmunotherapy patients having non-Hodgkin’s lymphoma and diffuse bone marrow uptake. Cancer Res 1:5827a–5831a

    Google Scholar 

  • Kanberoglu K, Mihmanli I, Kurugoglu S, Ogut G, Kantarci F (2001) bone marrow changes adjacent to the sacroiliac joints after pelvic radiotherapy mimicking metastases on MRI. Eur Radiol 11:1748–1752

    PubMed  CAS  Google Scholar 

  • Kaushansky K, Broudy VC, Grossmann A, Humes J, Lin N, Ren HP, Bailey MC, Papayannopoulou T, Forstrom JW, Sprugel KH (1995) Thrombopoietin expands erythroid progenitors, increases red cell production, and enhances erythroid recovery after myelosuppressive therapy. J Clin Invest 96:1683–1687

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kennedy B, Yarbro J (1966) Metabolic and therapeutic effects of hydroxyurea in chronic myelogenous leukemia. JAMA 195:1038

    PubMed  CAS  Google Scholar 

  • Kim T, Khan F, Galvin J (1980) A report of the working party: Comparison of total body irradiation techniques for bone marrow transplantation. Int J Radiat Oncol Biol Phys 6:775

    Google Scholar 

  • Knopse W (1988) Long-term bone marrow damage after irradiation. In: Testa N, Gale R (eds) Hematopoiesis: long–term effects of chemotherapy and radiation. Marcel Dekker, New York, p 93

    Google Scholar 

  • Knopse W, Husseini S (1986) Hematopoiesis on cellulose ester membranes (CEM). X. Effects of in vivo irradiation of stromal cells prior to application on CEM. Exp Hematol 14:975

    Google Scholar 

  • Knopse W, Blom J, Crosby W (1966) Regeneration of locally irradiated bone marrow. I. Dose dependent long-term changes in the rat, with particular emphasis upon vascular and stromal reaction. Blood 28:398

    Google Scholar 

  • Knopse W, Rayudu V, Cardello M et al (1976) bone marrow scanning with 52 iron (52Fe). Regeneration and extension of marrow after ablative doses of radiotherapy. Cancer 37:1432

    Google Scholar 

  • Knopse W, Husseini S, Fried W (1989) Hematopoiesis on cellulose ester membranes. XI. Induction of new bone and a hematopoietic microenvironment by matrix factors secreted by marrow stromal cells. Blood 74:66

    Google Scholar 

  • Kobos R, Bussel JB (2008) Overview of thrombopoietic agents in the treatment of thrombocytopenia. Clin Lymphoma Myeloma 8:33–43

    PubMed  CAS  Google Scholar 

  • Kovacs C, Evans M, Hooker J, Johnke R (1988) Long-term consequences of chemotherapeutic agents on hematopoiesis: Development of altered radiation tolerance. NCI Monogr 6:45

    PubMed  Google Scholar 

  • Kricun ME (1985) Red-yellow conversion: Its effect on the location of some solitary bone lesions. Skeletal Radiat 14:10–19

    Google Scholar 

  • Kuter DJ (2008) New drugs for familiar therapeutic targets: thrombopoietin receptor agonists and immune thrombocytopenic purpura. Eur J Haematol Suppl 69:9–18

    Google Scholar 

  • Laver J, Ebell W, Castro-Malaspina H (1986) Radiobiological properties of the human hematopoietic microenvironment: Contrasting sensitivities of proliferative capacity and hematopoietic function to in vitro irradiation. Blood 67:1090

    PubMed  CAS  Google Scholar 

  • Lee J, Umsawasdi T, Dhingra H et al (1986) Effects of brain irradiation and chemotherapy on myelosuppression in small-cell lung cancer. J Clin Oncol 4:1615

    PubMed  CAS  Google Scholar 

  • LENT SOMA scales for all anatomic sites (1995) Int J Radiat Oncol Biol Phys 31(5):049–1091

    Google Scholar 

  • Leonard JP, Quinto CM, Goldman SJ, Kozitza MK, Neben TY (1994) Recombinant human interleukin 11 (rhIL-22) multilineage hematopoietic recovery in mice after a myelosupressive regimen of sublethal irradiation and carboplatin. Blood 83:1499–1506

    PubMed  CAS  Google Scholar 

  • Li J, Kwong DL, Chn GC (2007) The effects of various irradiation doses on the growth an differentiation of marrow-derived human mesenchymal stromal cells. Pediatr Transpl 11:379–387

    Google Scholar 

  • Lichtman M (1981) The ultrastructure of the hemopoietic environment of the marrow: A review. Exp Hematol 9:391–410

    PubMed  CAS  Google Scholar 

  • Lindegaard JC, Grau C (2000) Has the outlook improved for amifostine as a clinical radioprotector? Radiother Oncol 57:113–118

    PubMed  CAS  Google Scholar 

  • Livingston GK, Falk RB, Schmid E (2006) Effect of occupational radiation exposures on chromosome aberration rates in former plutonium workers. Radiat Res 166:89–97

    PubMed  CAS  Google Scholar 

  • Lohrmann H, Schremi W (1988) Long-term hematopoietic damage after cytotoxic drug therapy for solid tumors. In: Testa N, Gale R (eds) Hematopoiesis: long-term effects of chemotherapy and radiation. Marcel Dek-ker, New York, p 325

    Google Scholar 

  • Loria RM, Conrad DH, Huff T, Carter H, Ben-Nathan D (2000) Androstenetriol and androstenediol. Protection against lethal radiation and restoration of immunity after radiation injury. Ann NY Acad Sci 917:860–867

    PubMed  CAS  Google Scholar 

  • Lorimore SA, Coates PJ, Scobie GE. Milne G, Wright EG (2001) Inflammatory-type responses after exposure to ionizing radiation in vivo: a mechanism for radiation-induced bystander effects? Oncogene 20:7085–7095

    Google Scholar 

  • MacVittie TJ, Farese AM (2001) Cytokine-based treatment for acute radiation-induced myelosuppression: preclinical and clinical perspective. In: Ricks RC, Berger ME, O’Hara FM

    Google Scholar 

  • Madhusudhan T, Majumdar SS, Mukhopadhyay A (2004) Degeneration of stroma reduces retention of homed cells in bone marrow of lethally irradiated mice. Stem Cells Dev 13:173–182

    PubMed  CAS  Google Scholar 

  • Maloney M, Lamela R, Patt H (1983) Decrease in hematopoietic stem cell domains as a delayed effect of x-irradiation. Int J Cell Cloning 1:206

    PubMed  CAS  Google Scholar 

  • Marsh JC (1976) The effects of cancer chemotherapeutic agents on normal hematopoietic precursor cells: a review. Cancer Res 36:1853

    PubMed  CAS  Google Scholar 

  • Marsh JC (1985) Correlation of hematologic toxicity of antineoplastic agents with their effects on bone marrow stem cells: Interspecies studies using an in vivo assay. Exp Hematol 13(suppl 16):16

    PubMed  CAS  Google Scholar 

  • Matthews DC, Appelbaum FR, Eary JF, Fisher DR, Durack LD, Hui TE, martin PJ, Mitchell D, Press WO, Storb R, Bernstein ID (1999) Phase I study of (131) I-anti-CD45 antibody plus cyclophosphamide and total body irradiation for advanced acute leukemia and myelodysplastic syndrome. Blood 15:1237–1247

    Google Scholar 

  • Mazur L (2000) Radioprotective effects of the thiols GSH and WR-2721 against X-ray –induction of micronuclei in erythroblasts. Mutat Res 468:27–33

    PubMed  CAS  Google Scholar 

  • Metcalf D (1990) The colony stimulating factors. Discovery development and clinical applications. Cancer 65:2185

    PubMed  CAS  Google Scholar 

  • Miller A, Weiner R (1988) Long-term bone marrow damage after acute nonlymphocytic leukemia. In: Testa N, Gale R (eds) Hematopoiesis: long-term effect of chemotherapy and radiation. Marcel Dekker, New York, p 289

    Google Scholar 

  • Miller C, Jones R, Piantadosi S et al (1990) Decreased erythropoietin response in patients with the anemia of cancer. N Engl J Med 322:1689

    PubMed  CAS  Google Scholar 

  • Moeller DW (1978) Review of health physics research administered by U.S. Nuclear regulatory commission. Health Phys 35:447–456

    PubMed  CAS  Google Scholar 

  • Molineux G, Xu C, Hendry J, Testa N (1986) A cellular analysis of long-term hematopoietic damage in mice after repeated treatment with cyclophosphamide. Cancer Chemother Pharmacol 18:11

    PubMed  CAS  Google Scholar 

  • Morardet N, Parmentier C, Flamant R (1973) Etude par le fer 59 des effets de la radiotherapie’ etendue des hematosarcomes sur l’erythropoiese. Biomedicine 18:228

    PubMed  CAS  Google Scholar 

  • Morley A, Trainor K, Seshadri R (1978) Chronic hypoplastic marrow failure and residual injury. Blood Cells 4:253

    PubMed  CAS  Google Scholar 

  • Mothersill C, Seymour C (2003) low-dose radiation effects: experimental hematology and the changing paradigm. Exp Hematol 31:437–445

    PubMed  Google Scholar 

  • Mouiseddine M, Francois S, Semont A, Sache A, Allenet B, Mathieu N, Frick J, Thierry D, Chapel A (2007) Human mesenchymal stem cells home specifically to radiation-injured tissues in a non-obese diabetes/severe combined immunodeficiency mouse model. Br J Radiol 1:S49–S55

    Google Scholar 

  • Mouthon MA, Gaugler MH, Vandamme M, Gourmelon P, Van der Wagemaker G, Meeren A (2002a) Ticlopidine inhibits the prothrombotic effects of thrombopoietin and ameliorates survival after supralethal total body irradiation. Thromb Haemost 87:323–328

    PubMed  CAS  Google Scholar 

  • Mouthon MA, Van der Meeren A, Vandamme M, Squiban C, Gaugler MH (2002b) Thrombopoietin protects mice from mortality and myelosuppression following high-dose irradiation: importance of time scheduling. Can J Physiol Pharmacol 80:717–721

    PubMed  CAS  Google Scholar 

  • Muramoto GG, Chen B, Cui X, Chao NJ, Chute JF (2006) Vascular endothelial cells produce soluble factors that mediate the recovery of human hematopoietic stem cells after radiation injury. Biol Blood Marrow Transpl 12:530–540

    Google Scholar 

  • Naparstek E, Donnelly T, Kase K, Green-berger J (1985) Biologic effects of in vitro X-irradiation of murine long-term bone marrow cultures on the production of granulocyte-macrophage colony-stimulating factors. Exp Hematol 13:701

    PubMed  CAS  Google Scholar 

  • Naparstek E, Donnelly T, Shadduk R et al (1986a) Persistent production of colony-stimulating factor (CSF-1) by cloned bone marrow stromal cell line D2XR11 after X-irradiation. J Cell Physiol 126:407

    PubMed  CAS  Google Scholar 

  • Naparstek E, Pierce J, Metcalf D et al (1986b) Induction of growth alteration in factor-dependent hematopoietic progenitor cell lines by cocultivation with irradiated bone marrow stromal cell lines. Blood 67:1395

    PubMed  CAS  Google Scholar 

  • Naparstek E, Fitzgerald T, Sakakeeny M et al (1986c) Induction of malignant transformation of cocultivated hematopoietic stem cells by X-irradiation of murine bone marrow stromal cells in vitro. Cancer Res 46:4677

    PubMed  CAS  Google Scholar 

  • Neta R, Douches S, Oppenheim J (1986) Interleukin-1 is a radioprotector. J Immunol 136:2483

    PubMed  CAS  Google Scholar 

  • Noach EJ, Ausema A, Dillingh JH, Dontje B, Weersine E, Akkerman I, Vellenga E, de Haan G (2002) Growth factor treatment prior to low-dose total body irradiation increases donor cell engraftment after bone marrow transplantation in mice. Blood 100:312–317

    PubMed  CAS  Google Scholar 

  • Northdurft W, Kreja L, Selig C (1997) Acceleration of hemopoietic recovery in dogs after treatment extended-field partial-body irradiation by treatment with colony-stimulating factors: rhG-CSF and rh GM-CSF. Int J Radiat Oncol Biol Phys 37:1145–1154

    Google Scholar 

  • Okunieff P, Li M, Liu W, Sun J, Fenton B, Zhang L, Ding I (2001) Keratinocyte growth factors radioprotect bowel and bone marrow but not KHT sarcoma. Am J Clin Oncol 24:49105

    Google Scholar 

  • Ollivier L, Gerber S, Vanel D, Brisse H, Leclere J (2006) Improving the interpretation of bone marrow imaging in cancer patients. Cancer Imaging 20:194–198

    Google Scholar 

  • Orazi A, Du X, Yang Z, Kashai M, Williams DA (1996) Interleukin-11 prevents apoptosis and accelerates recovery of small intestinal mucosa in mice treated with combined chemotherapy and radiation. Lab Invest 75:33–42

    PubMed  CAS  Google Scholar 

  • Panoskaltiss-Mortari A, Taylor PA, Rubin JS, Uren A, WElniak LA, Murphy WJ, Farrell CL, Lacey DL, Blazar BR (2000) Keratinocyte growth factor facilitates alloengraftment and ameliorates graft-versus-host disease in mice by a mechanism independent of repair of conditioning-induced tissue injury. Blood 92:4350–4356

    Google Scholar 

  • Parmentier C, Morardet N, Tubiana M (1983) Late effects on human bone marrow after extended field radiotherapy. Int J Radiat Oncol Biol Phys 9:1303

    PubMed  CAS  Google Scholar 

  • Parmentier C, Morardet N, Tubiana M (1988) Long-term bone marrow damage after treatment for lymphomas. In: Testa N, Gale R (eds) Hematopoiesis: long-term effects of chemotherapy and radiation. Marcel Dekker, New York, p 301

    Google Scholar 

  • Peng R, Wang D, Wang B, Xia G, Li Y, Xiong C, Sao Y, Yang H, Cui Y (1999) Apoptosis of hemopoietic cells in irradiated mouse bone marrow. J Environ Pathol Toxicol Oncol 18:305–308

    PubMed  CAS  Google Scholar 

  • Petrilli AS, Oliveira DT, Ginani VC, Kechichian R, Dishtchekenian A, Filho WM, Tanaka C, Dias CG, Latorre MR, Brunetto AL, Cordoso H, Almeida MT, de Camargo B (2002) Use of amifostine in the therapy of osteosarcoma in children and adolescents. J Pediatr Hematol Oncol 2002(24):188–191

    Google Scholar 

  • Reactor safety study (1975) Appendix VI. USNRC, Washington 1400 (NUREG 75/014)

    Google Scholar 

  • Rekha PS, Kuttan G, Kuttan R (2000) Effect of herbal preparation, brahma rasayana, in ameliaoration of radiation induced damage. Indian J Exp Biol 38:999–1002

    PubMed  CAS  Google Scholar 

  • Reski SN, Bunjes D, Buchmann I, Seitz U, Glattin gG, Neumaier S, Kotzerke J, Buck A, Martin H, Dohner H, Bergmann L (2001) Targeted bone marrow irradiation in the conditioning of high-risk leukaemia prior to stem cell transplantation. Eur J Nucl Med 28:807–815

    Google Scholar 

  • Rich TA, Shelton CH, Kirichenko A, Straume M (2002) Chronomodulated chemotherapy and irradiation: an idea whose time has come? Chronobiol Int 19:191–205

    PubMed  CAS  Google Scholar 

  • Rodriguez MC, Bernad A, Aracil M (2003) Interleukin-6 deficiency affects bone marrow stromal precursors, resulting in defective hematopoietic support. Blood 103:3349–3354

    Google Scholar 

  • Rozhdestvensky L, Sernichenko A (2004) Experimental approach to improving early postirradiaiton restoration in the hemopoietic system of irradiated canines. J Radiat Res 43:43–51

    Google Scholar 

  • Rubin P (1973) Regeneration of bone marrow in rabbits following local, fractionated irradiation. Cancer 32:847

    PubMed  CAS  Google Scholar 

  • Rubin P, Casarett GW (1968) Clinical Radiation Pathology. WB Saunders, Philadelphia

    Google Scholar 

  • Rubin P, Scarantino C (1978) The bone marrow organ: the critical structure in radiation-drug interaction. Int J Radiat Oncol Biol Phys 4:3

    PubMed  CAS  Google Scholar 

  • Rubin P, Landman S, Mayer E et al (1973) bone marrow regeneration and extension after extended field irradiation in Hodgkin’s disease. Cancer 32:699

    PubMed  CAS  Google Scholar 

  • Rubin P, Bennet J, Begg C, et al (1981) The comparison of total body irradiation versus chlorambucil and prednisone for remission induction of active chronic lymphocytic leukemia: An ECOG Study. I. Total body irradiation, response and toxicity. Int J Radiat Oncol Biot Phys 7:1623

    Google Scholar 

  • Rubin P, Constine L, Scarantino C (1984) The paradoxes in patterns of mechanisms of bone marrow regeneration after irradiation. II. Total body irradiation. Radiother Oncol 2:227

    PubMed  CAS  Google Scholar 

  • Rubin M, Hathorn J, Pizzo P (1988) Controversies in the management of febrile neutropenic cancer patients. Cancer Invest 6:167

    PubMed  CAS  Google Scholar 

  • Rubin P, Constine LS, Fajardo LF, Phillips TL, Wasserman TH (1995) RTOG Late Effects Working Group. Overview. Late Effects of Normal Tissues (LENT) scoring system. Int J Radiat Oncol Biol Phys 31(5):1041–1042

    Google Scholar 

  • Rubin P, Elbadawi MA, Thompson RAE, Cooper RA Jr (1997) bone marrow regeneration from cortex following segmental fractionated irradiation. Int J of Radiat Oncol Biol Phys 2:27–38

    Google Scholar 

  • Sacks E, Goris M, Glatstein E et al (1978) bone marrow regeneration following large field radiation. Influence of volume, age, dose and time. Cancer 42:1057

    PubMed  CAS  Google Scholar 

  • Satyamitra M, Uma DP, Murase H, Kagiya VT (2003) In vivo postradiation protection by a vitamin E analog, alpha-TMG. Radiat Res 160:655–661

    PubMed  CAS  Google Scholar 

  • Scarantino C, Rubin P, Constine L (1984) The paradoxes in patterns and mechanism of bone marrow regeneration after irradiation. I. Different volumes and doses. Radiother Oncol 2:215

    PubMed  CAS  Google Scholar 

  • Schremi W, Lohrmann H, Anger B (1985) Stem cell defects after cytoreductive therapy in man. Exp Hematol 13(suppl 16):31

    Google Scholar 

  • Seed TM, Fritz TE, Tolle DV, Jackson WE III (2002) Hematopoietic responses under protracted exposures to low daily dose gamma irradiation. Adv Space Res 30:945–955

    PubMed  CAS  Google Scholar 

  • Shimoi K, Masuda S, Shen B, Furugori M, Dinae N (1996) Radioprotective effects of antioxidative plant flavonoids in mice. Mutat Res 350:153–161

    Google Scholar 

  • Sieff C (1987) Hematopoietic growth factors. J Clin Invest 79:1549

    PubMed  CAS  PubMed Central  Google Scholar 

  • Siegel JA, Yeldell D, Goldenberg DM, Stabin MG, Sparks RB, Sharkey RM, Brenner A, Blumenthal RD (2003) Red marrow radiation does adjustment using plasma FLT3-L cytokine levels; improved correlations between hematologic toxicity and bone marrow dose for radioimmunotherapy patients. J Nucl Med 44:67–76

    PubMed  CAS  Google Scholar 

  • Smith M, Barnett M, Bassan R, Gatta G, Tondini C, Kenr W (2004) Adult acute myeloid leukaemia. Crit Rev Oncol Hematol 50:197–222

    Google Scholar 

  • Smith TJ, Khatcheressian J, Lyman GH, Ozer H, Armitage JO, Balducci L, Bennett CL, Cantor SB, Crawford J, Cross SJ, Demetri G, Desch CE, Pizzo PA, Schiffer CA, Schwartzberg L, Somerfield MR, Somlo G, Wade JC, Wade JL, Winn RJ, Wozniak AJ, Wolff AC (2006) Update of recommendations for the use of white blood cell growth factors; an evidence based clinical practice guideline. J Clin Oncol 24(19):3187–3205

    Google Scholar 

  • Song Z, Quesenberry P (1984) Radioresistant murine marrow stromal cells: a morphologic and functional characterization. Exp Hematol 12:523

    PubMed  CAS  Google Scholar 

  • Stabin MG, Sigele JA, Sparks RB (2002) Sensitivity of model-based calculations of red marrow dosimetry to changes in patient-specific parameters. Cancer Biother Radiopharm 17:535–543

    PubMed  Google Scholar 

  • Storb R, Deeg HJ, Applebaum FR et al (1990) Total-body irradiation in bone marrow transplantation. In: Browne D (ed) Treatment of radiation injuries. Plenum Press, New York, pp 29–33

    Google Scholar 

  • Sudheer KM, Unnikrishnan MK, Uma DP (2003) Effect of 5-aminosalicyclic acid on radiation-induced micronuclei in mouse bone marrow. Mutat Res 527:7–14

    Google Scholar 

  • Sugarbaker P, Gianola F, Barofsky I et al (1986) 5-Fluorouracil chemotherapy and pelvic radiation in the treatment of large bowel cancer. Cancer 58:826

    PubMed  CAS  Google Scholar 

  • Sykes M, Chu F, Savel H et al (1964) The effects of varying dosages of irradiation upon sternal marrow regeneration. Radiology 83:1084

    PubMed  CAS  Google Scholar 

  • Testa N, Henry J, Molineux G (1985) Long-term bone marrow damage in experimental systems and in patients after radiation or chemotherapy. Anticancer Res 5:101

    PubMed  CAS  Google Scholar 

  • Testa N, Hendry J, Molineux G (1988) Long-term bone marrow damage after cytotoxic treatment. In: Testa N, Gale R (eds) Hematopoiesis: long-term effects of chemotherapy and radiation. Marcel Dekker, New York, p 75

    Google Scholar 

  • Testa N, Bhavnani M, Will A, Morris Jones P (1998) Long-term bone marrow damage after treatment for acute lymphoblastic leukemia. In: Testa N, Gale R (Eds) Hematopoiesis: long-term effects of chemotherapy and radiation. Marcel Dekker, New York, p 279

    Google Scholar 

  • Thierry D, Chapel A, Bertho JM et al (2002) Infusion of mesenchymal stem cells and ex vivo expanded hematopoietic cells; preclinical treatment of radiation induced multi-organ failure. Blood 10:612a (abstract)

    Google Scholar 

  • Tubiana M, Frindel E, Croizat H (1979) Effects of radiation on bone marrow. Pathol Biol (Paris) 27:326

    Google Scholar 

  • Van Os R, Robinson S, Sheridan T, Mislow JMK, Dawes D, Mauch PM (1998) Granulocyte colony-stimulating factor enhances bone marrow stem cell damage caused by repeated administration of cytotoxic agents. Blood 92:1950–1956

    PubMed  Google Scholar 

  • Van Os R, Robinson S, Sheridan T, Mauch PM (2000) Granulocyte-colony stimulating factor impedes recovery from damage caused by cytoxic agents through increased differentiation at the expense of self-renewal. Stem Cells 18:120–127

    PubMed  Google Scholar 

  • Vodovotz Y, Lucia MS, DeLucca AM, Mitchell JB, Kopp JB (2000) Reduced hematopoietic function and enhanced radiosensitivity of transforming growth factor-beta1 transgenic mice. Int J Cancer 90:13–21

    PubMed  CAS  Google Scholar 

  • Wagemaker G, Hartong SC, Neelis KJ, Egeland T, Wognum AW (1998) In vivo expansion of hemopoietic stem cells. Stem Cells 16(suppl 1):185–191

    PubMed  Google Scholar 

  • Wahl RL (2003) The clinical importance of dosimetry in radioimmunotherpay with tositumomab and iodine I131 tositumomab. Semin Oncol 30:31–38

    PubMed  CAS  Google Scholar 

  • Wahl RL, Zasadny KR, MacFarlane D, Francis IR, Ross CW, Estes J, Fisher S, Regan D, Kroll S, Kaminski MS (1998) Iodine-131 anti-B1 antibody for B-cell lymphoma: an update on the Michigan Phase I experience. J Nucl Med 39:21S–27S

    PubMed  CAS  Google Scholar 

  • Walker JS (1994) The atomic energy commission and the politics of radiation protection, 1967–1971. Isis 85:57–78

    PubMed  CAS  Google Scholar 

  • Weber JM, Forsythe SR, Christianson CA, Frisch BJ, Gigliotti BJ, Jordon CT, Milner LA, Guzman ML, Calvi LM (2006) Parathyroid hormone stimulates expression of the Notch ligand Jagged 1 in osteoblastic cells. Bone 39:485–493

    PubMed  CAS  Google Scholar 

  • Weisdorf D, Chao N, Waselenko JK, Dainiak N, Armitage JO, McNIece I, Confer D (2006) Acute radiation injury: contingency planning fro triage, supportive care, and transplantation. Boil Blood Marrow Trasnpl 12:672–682

    Google Scholar 

  • Gammaitoni L. Weisel KC, Gunetti M, Wu KD, Bruno S, Pinelli S, Bonati A, Aglietta M, Moore MA, Piacibello W (2004) Elevated telomerase activity and minimal telomere loss in cord blood long-term cultures with extensive stem cell replication. Blood 103:4440–4448

    Google Scholar 

  • Whitnall MH, Elliott TB, Landauer MR, Wilhelmsen CL, McKinney L, Kumar KS, Srinivasan V, Ledney GD, Seed TM (2002) Protection against gamma-irradiation with 5-androstenediol. Mil Med 167:64–65

    PubMed  Google Scholar 

  • White DC (1975) Atlas of Radiation Histopathology. ERDA Report TID-26676. Technical Information Center, Office of Public Affairs, US. Energy and Development Administration, Washington

    Google Scholar 

  • Wiseman GA, White CA, Stabin M, Dunn WL, Erwin W, Dahlbom M, Raubitschek A, Karvelis K, Schultheiss T, Witzig TE, Belanger R, Spies S, Silverman DR, Berlfein JR, Ding E, Grillo-Lopez AJ (2000) Phase I/II 90Y-Zevalin (yttrium90 ibritumomab tiuxetan, IDEC-Y2B8) radioimmunotherapy dosimetry results in relapsed or refractor non-Hodgkin’s lymphoma. Eur J Nucl Med 27:766–777

    PubMed  CAS  Google Scholar 

  • Wiseman GA, Kornmehl E, Leigh B, Erwin WD, Podoloff DA, Spies S, Sparks RB, Stabin MG, Witzig T, White CA (2003) Radiation dosimetry results and safety correlations from 90Y-ibritumomab tiuxetan radioimmunotherapy for relapsed or refractory non-Hodgkin’s lymphoma: combined data from 4 clinical trials. J Nucl Med 44:465–474

    PubMed  CAS  Google Scholar 

  • Wolf NS, Penn PE, Rao D, McKee MD (2003) Intraclonal plasticity for bone, smooth muscle, and adipocyte lineages in bone marrow stroma fibroblastoid cells. Exp Cell Res 290:346–357

    PubMed  CAS  Google Scholar 

  • Wong Fl, Yamada M, Tominaga T, Jujiwara S, Suzuki G (2005) Effects of radiation on the longitudinal trends of hemoglobin levels in the Japanese atomic bomb survivors. Radiat Res 164:820–827

    Google Scholar 

  • Yankelevitz DF, Henschke CI, Knapp PH et al (1992) Effect of radiation therapy on thoracic and lumbar bone marrow: evaluation with MR imaging. Am J Roentgenol 157:87–92

    Google Scholar 

  • Zhang S-X (1999) An Atlas of histology. Springer, New York 54:56, 57

    Google Scholar 

  • Zhao Y, Zhan Y, Burke KA, Anderson WF (2005) Soluble factors(s) from bone marrow cells can rescue lethally irradiated mice by protecting endogenous hematopoietic stem cells. Exp Hematol 33:428–434

    PubMed  CAS  Google Scholar 

  • Zuckerman K, Rhodes R, Sparks B, Chenier B (1985) Radioresistance of stromal cells supportive of hematopoiesis in murine long-term bone marrow cell cultures. Exp Hematol 13:372

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane L. Liesveld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liesveld, J.L., Rubin, P., Constine, L.S. (2014). Hematopoietic System. In: Rubin, P., Constine, L., Marks, L. (eds) ALERT • Adverse Late Effects of Cancer Treatment. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75863-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75863-1_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75862-4

  • Online ISBN: 978-3-540-75863-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics