Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman M, Biaume F (1970) Structure of the Schumann-Runge bands from the (0–0) to the (13–0) band. J Mol Spectrosc 35:73–82

    Article  Google Scholar 

  • Ackerman M, Biaume F, Kockarts G (1970) Absorption cross-sections of the Schumann-Runge bands of molecular oxygen. Planet Space Sci 18:1639–1651

    Article  Google Scholar 

  • Adler-Golden S (1997) Kinetic parameters for OH nightglow modeling consistent with recent laboratory measurements. J Geophys Res 102A:19969–19976

    Article  Google Scholar 

  • Ajello JM, Witt N (1979) Simultaneous H(1216 A) and He(584 A) observations of the interstellar wind by Mariner 10. In: Rycroft MJ (ed) Space Research, Vol 19. Pergamon Press, Oxford, pp 417–420

    Google Scholar 

  • Ali AA, Ogrizlo EA, Shen YQ, Wassel PT (1986) The formation of O2 (a1Δg) in homogeneous and heterogeneous atom recombination. Can J Phys 64:1614–1620

    Google Scholar 

  • Allen CW (1973) Astrophysical quantities, 3rd edn. The Athlone Press, London

    Google Scholar 

  • Allison AC, Dalgarno A, Pasachoff NW (1971) Absorption by vibrationally excited molecular oxygen in the Schumann-Runge continuum. Planet Space Sci 19:1463–1473

    Article  Google Scholar 

  • Alpers M, Höffner J, von Zahn U (1990) Iron atom densities in the polar mesosphere from lidar observations. Geophys Res Lett 17:2345–2348

    Article  Google Scholar 

  • Ambartsumyan VA, Mustel ER, Severny AB, Sobolev VV (1952) Theoretical astrophysics. Ambartsumyan VA (ed) Gostekhizdat, Moscow

    Google Scholar 

  • Andreeva LA, Kluev OF, Portnyagin YuI, Khananiyan AA (1991) Studies of the upper atmospheric processes by the artificial luminous cloud method. Hydrometeoizdat, Leningrad

    Google Scholar 

  • Armstrong EB (1967) Observation of the airglow Hα emission. Planet Space Sci 15:407–425

    Article  Google Scholar 

  • Babcock HW (1939) Radiations of the night sky photographed with a grating. Publ Astron Soc Pac 51:47–50

    Article  Google Scholar 

  • Bakanas VV, Perminov VI (2003) Some features in the seasonal behavior of the hydroxyl emission characteristics in the upper atmosphere. Geomagn Aeronomy 43:363–369

    Google Scholar 

  • Baker DJ, Waddoups RO (1967) Rocket measurements of midlatitude night airglow emissions. J Geophys Res 72:4881–4883

    Google Scholar 

  • Baker DJ, Waddoups RO (1968) Correction to paper by D. Baker, R. Waddoups. Rocket measurements of midlatitude night airglow emissions. J Geophys Res 73:2546–2547

    Article  Google Scholar 

  • Baker KD, Baker DJ, Ulwick JC, Stair AT (1977) Measurements of 1.5–5.3 μm infrared enhancements associated with a bright aurorae. J Geophys Res 82:3518–3528

    Article  Google Scholar 

  • Baluja KL, Zeippen CJ (1988) M1 and E2 transition probabilities for states within the 2p4 configuration of the OI isoelectronic sequence. J Phys B 21:1455–1471

    Article  Google Scholar 

  • Banks PM, Kockarts G (1973a) Aeronomy. Pt A. Academic Press, New York

    Google Scholar 

  • Banks PM, Kockarts G (1973b) Aeronomy. Pt B. Academic Press, New York

    Google Scholar 

  • Barth CA (1964) Three-body reaction. Ann Géophys 20:182–196

    Google Scholar 

  • Barth CA, Hildebrandt AF (1961) The 5577; Å airglow emission mechanism. J Geophys Res 66:985–986

    Article  Google Scholar 

  • Bates DR (1948) Theoretical considerations regarding the night sky emission. In: The emission spectra of the night sky and aurorae (Reports of the Gassiot Committee). The Phys Soc London, pp 21–33

    Google Scholar 

  • Bates DR (1951) The temperature of the upper atmosphere. Proc Roy Soc 64B:805–821

    Google Scholar 

  • Bates DR (1954) The physics of the upper atmosphere. In: Kuiper GP (ed) The Earth as a planet. University Chicago Press, Chicago, pp 576–643

    Google Scholar 

  • Bates DR (1982) Airglow and auroras. In: Massey HSW, Bates DR (eds) Applied atomic collision physics. Atmospheric physics and chemistry, Vol 1. Academic Press, New York, pp 149–224

    Google Scholar 

  • Bates DR (1988a) Transition probabilities of the bands of the oxygen systems of the nightglow. Planet Space Sci 36:869–873

    Article  Google Scholar 

  • Bates DR (1988b) Excitation and quenching of the oxygen bands in the nightglow. Planet Space Sci 36:875–881

    Article  Google Scholar 

  • Bates DR (1988c) Excitation of 557.7 nm OI line in nightglow. Planet Space Sci 36:883–889

    Article  Google Scholar 

  • Bates DR, Nicolet M (1950) The photochemistry of atmospheric water vapour. J Geophys Res 55:301–327

    Article  Google Scholar 

  • Bates DR, Patterson TNL (1962) Helium ions in the upper atmosphere. Planet Space Sci 9:599–605

    Article  Google Scholar 

  • Becker KH, Groth W, Thran D (1971) The airglow reaction NO + O + (M) to NO2 * + (M) at low pressure. In: Fioccho G (ed) Mesospheric models and related experiments. D Reidel Publishing Company, Dordrecht, pp 261–265

    Google Scholar 

  • Benedict WS, Plyler EK, Humphreys CJ (1953) The emission spectrum of OH from 1.4 to 1.7 μ. J Chem Phys 21:398–402

    Article  Google Scholar 

  • Berg MA, Shefov NN (1962a) Emission of the hydroxyl bands and the (0,1) λ 8645 Å atmospheric band of oxygen in the nightglow. Planet Space Sci 9:167–171

    Article  Google Scholar 

  • Berg MA, Shefov NN (1962b) OH emission and atmospheric O2 band λ 8645 A. In: Krassovsky VI (ed) Aurorae and Airglow, N 9. USSR Academic Science Publishing House, Moscow,pp 46–52

    Google Scholar 

  • Berg MA, Shefov NN (1963) The hydroxyl emission with different vibrational excitation. In: Krassovsky VI (ed) Aurorae and Airglow, N 10. USSR Academic Science Publishing House, Moscow, pp 19–23

    Google Scholar 

  • Bevan PLT, Johnson GRA (1973) Kinetics of ozone formation in the pulse radiolysis of oxygen gas. J Phys Chem 69:216–217

    Google Scholar 

  • Bishop J, Link R (1993) Metastable He 1083 nm intensities in the twilight: a reconsideration. Geophys Res Lett 20:1027–1030

    Article  Google Scholar 

  • Bogdanov AV, Dubrovsky GV, Osipov AI, Strelchenya VM (1991) Rotational relaxation in gases and plasma. Energoatomizdat, Moscow

    Google Scholar 

  • Bowen IS (1934) The excitation of the permitted OIII nebular lines. Publ Astron Soc Pac 46:146–148

    Article  Google Scholar 

  • Bowen IS (1947) Excitation by line coincidence. Publ Astron Soc Pac 59:196–198

    Article  Google Scholar 

  • Brandt JC, Chamberlain JW (1959) Interplanetary gas. I. Hydrogen radiation in the night sky. Astrophys J 130:670–682

    Article  Google Scholar 

  • Breen JE, Quy RB, Glass GP (1973) Vibrational relaxation of O2 in the presence of atomic oxygen. J Chem Phys 59:556–557

    Article  Google Scholar 

  • Breig EL (1969) Statistical model for the vibrational deactivation of molecular by atomic oxygen. J Chem Phys 51:4539–4547

    Article  Google Scholar 

  • Breig EL (1970) Secondary production processes for the hydroxyl atmospheric airglow. Planet Space Sci 18:1271–1274

    Article  Google Scholar 

  • Broadfoot AL, Johanson AE (1976) Fe (3860 A) emission in the twilight. J Geophys Res 81:1331–1334

    Google Scholar 

  • Broadfoot AL, Kendall KR (1968) The airglow spectrum 3100–10000 A. J Geophys Res 73:426–428

    Article  Google Scholar 

  • Bunn FE, Gush HP (1972) Spectrum of the night airglow between 3 and 4 microns. Can J Phys 50:213–215

    Google Scholar 

  • Byram ET, Chubb TA, Friedman H, Kupperian JE (1957) Far ultraviolet radiation in the night sky. In: Zelikoff M (ed) The threshold of space. Pergamon Press, London, pp 203–210

    Google Scholar 

  • Caledonia GE, Kennealy JP (1982) NO infrared radiation in the upper atmosphere. Planet Space Sci 30:1043–1056

    Article  Google Scholar 

  • Caledonia GE, Green BD, Nadile RM (1985) The analysis of SPIRE measurements of atmospheric limb CO2(v2) fluorescence. J Geophys Res 90A:9783–9788

    Article  Google Scholar 

  • Callear AB, Lambert JD (1969) Energy exchange between the chemical species. In: Bamford CH, Tipper CFH (eds) Comprehensive chemical kinetics. The formation and decay of excited species, Vol 3. Elsevier Publishing Company, Amsterdam, pp 214–317

    Google Scholar 

  • Capitelli M, Cacciatore M, De Benedictis S, Dilonardo M, Gorse C, Gordiets BF, Zhdanok SA, Billing GD, Smith IWM, Aquilanti V, Laganà A, Wadehra JM, Bréchignac P, Taran JP, Rich JW, Bergman RC, Rusanov VD, Fridman AA, Sholin GV, Ricard A (1986) Nonequilibrium vibrational kinetics. Capitelli M (ed) Springer-Verlag, Berlin

    Google Scholar 

  • Cashion K (1963) A method for calculating vibrational transition probabilities. J Mol Spectrosc 10:182–231

    Article  Google Scholar 

  • Chalamala BR, Copeland RA (1993) Collision dynamics of OH(X2ϖ, v = 9). J Chem Phys 99:5807–5811

    Article  Google Scholar 

  • Chamberlain JW (1961) Physics of the Aurora and Airglow. Academic Press, New York

    Google Scholar 

  • Chamberlain JW (1978) Theory of planetary atmospheres. Academic Press, New York

    Google Scholar 

  • Chamberlain JW, Hunten DM (1987) Theory of planetary atmospheres, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Chamberlain JW, Smith CA (1959) On the excitation rates and intensities of OH in the airglow. J Geophys Res 64:611–614

    Article  Google Scholar 

  • Chandrasekhar S (1950) Radiative transfer. Clarendon Press, Oxford

    Google Scholar 

  • Chanin ML, Keckhut P, Hauchecorne A, Labitzke K (1989) The solar activity – Q.B.O. effect in the lower thermosphere. Ann Geophys 7:463–470

    Google Scholar 

  • Chapman S (1931) Absorption and ionizing effect of monochromatic radiation in an atmosphere of a rotating Earth. Proc Phys Soc London 43(26):483–501

    Google Scholar 

  • Chapman S (1939) Notes on atmospheric sodium. Astrophys J 90:309–316

    Article  Google Scholar 

  • Charters PE, Polanyi JC (1960) In improved technique for the observation of infrared chemiluminescence: resolved emission of the OH arising from H+O3. Can J Chem 38:1742–1755

    Article  Google Scholar 

  • Charters PE, Macdonald RG, Polanyi JC (1971) Formation of vibrationally excited OH by the reaction H+O3. Appl Opt 10:1747–1754

    Google Scholar 

  • Chernjajev VI, Vuks MF (1937) The spectrum of the sky in the twilight. Dokl USSR Acad Sci 14:77–79

    Google Scholar 

  • Cheung ASC, Yoshino K, Parkinson WH, Freeman DE (1984) Herzberg continuum cross section of oxygen in the wave length region 193.5–204.0 nm and band oscillator strength of the (0–0) and (1–0) Schumann–Runge bands. Can J Phys 62:1752–1764

    Google Scholar 

  • Chikashi Y, Masahara F, Hirota E (1989) Detection of the NaO radical by microwave spectroscopy. J Chem Phys 90:3033–3037

    Article  Google Scholar 

  • Chuvaev KK (1952) On luminescence of the terrestrial atmosphere in continuum spectrum. Dokl USSR Acad Sci 87:551–554

    Google Scholar 

  • Chuvaev KK (1961) On the separation of the night sky luminescence on components. Astron Rep 38:692–705

    Google Scholar 

  • Choi GH, Monson IK, Wickwar VB, Rees D (1998) Seasonal variations of temperature near the mesopause from Fabry-Perot interferometer observations of OH Meinel emissions. Adv Space Res 21:843–846

    Article  Google Scholar 

  • Clemesha BR, Simonich DM, Takahashi H, Melo SML, Plane JMC (1995) Experimental evidence for photochemical control of the atmospheric sodium layer. J Geophys Res 100D:18909–18916

    Article  Google Scholar 

  • Clough PN, Thrush BA (1967) Mechanism of chemiluminescent reaction between nitric oxide and ozone. Trans Faraday Soc 63:915–925

    Article  Google Scholar 

  • Condon EU, Shortley G (1935) The theory of atomic spectra. Cambridge University Press, London

    Google Scholar 

  • Conner JF, Smith RW, Hernandez G (1993) Techniques for deriving Doppler temperatures from multiple-line Fabry-Perot profiles: an analysis. Appl Opt 32:4437–4444

    Google Scholar 

  • Cook TB, West WP, Dunning FB, Rundel RD, Stebbings RF (1974) Absolute cross sections for Penning ionization of atomic oxygen by helium metastable atoms. J Geophys Res 79:678–680

    Article  Google Scholar 

  • Coxon JA (1980) Optimum molecular constants and term values for the X2ϖ(v< 5) and A2ς +(v< 3) states of OH. Can J Phys 58:933–949

    Google Scholar 

  • Coxon JA, Foster SC (1982) Rotational analysis of hydroxyl vibration rotation emission bands: molecular constants for OH X2ϖ, 6 < v< 10. Can J Phys 60:41–48

    Google Scholar 

  • Dalgarno A (1963) Vibrationally excited molecules in atmospheric reactions. Planet Space Sci 10:19–28

    Article  Google Scholar 

  • Davis TN, Smith LL (1965) Latitudinal and seasonal variations in the night airglow. J Geophys Res 70:1127–1138

    Article  Google Scholar 

  • Degen V (1968) The Herzberg II (c1ς u - -X3ςg -) system of O2 in emission in the oxygen-argon afterglow. Can J Phys 46:783–787

    Google Scholar 

  • Degen V (1969) Vibrational populations of O2 (A3ςu +) and synthetic spectra of the Herzberg bands in the night airglow. J Geophys Res 74:5145–5154

    Article  Google Scholar 

  • Degen V (1977) Nightglow emission rates in the O2 Herzberg bands. J Geophys Res 82:2437–2438

    Article  Google Scholar 

  • Degen V, Nicholls RW (1969) Intensity measurements on the A3ς u + -X3ςg - Herzberg I band system of O2. J Phys B Ser 2 2: 1240–1250

    Article  Google Scholar 

  • Degges TC (1971) Vibrationally excited nitric oxide in the upper atmosphere. Appl Opt 10:1856–1860

    Google Scholar 

  • Déjardin G, Bernard R (1938) Les bandes de la molécule OH dans le spectre du ciel nocturne. Comptes Rendus Acad Sci 206:1747–1749

    Google Scholar 

  • Delannoy J (1960) Sur les observations crépusculaires de la raie du lithium au cours de l Année Géophysiques Internationale. Ann Géophys 16:236–252

    Google Scholar 

  • Dere KP (1977) Extreme ultraviolet spectra of solar active region and their analysis. Solar Phys 82:77–93

    Google Scholar 

  • Dick KA (1977) On the rotational temperature of the airglow hydroxyl emissions. Planet Space Sci 25:595–596

    Article  Google Scholar 

  • Ditchburn RW, Young PA (1962) The absorption of molecular oxygen between 1850 and 2500 Å. J Atmos Terr Phys 24:127–139

    Article  Google Scholar 

  • Dodd JA, Lipson SJ, Blumberg WAM (1990) Vibrational relaxation of OH (X2ϖi, v = 1-3) by O2. J Chem Phys 92:3387–3393

    Article  Google Scholar 

  • Dodd JA, Lipson SJ, Blumberg WAM (1991) Formation and vibrational relaxation of OH(X2ϖi, v) by O2 and CO2. J Chem Phys 95:5752–5762

    Article  Google Scholar 

  • Dodd JA, Blumberg WAM, Lipson SJ, Lowell JR, Armstrong PS, Smith DR, Nadile RM, Wheeler NB, Huppi ER (1993) OH(v, N) column densities from high-resolution Earthlimb spectra. Geophys Res Lett 20:305–308

    Article  Google Scholar 

  • Dodd JA, Lipson SJ, Armstrong PS, Blumberg WAM, Nadile RM, Adler-Golden SM, Marinelli WJ, Holtzclaw KW, Green BD (1994) Analysis of hydroxyl earthlimb air glow emissions: kinetic model for state-to-state dynamics of OH (v, N). J Geophys Res 99D:3559–3585

    Article  Google Scholar 

  • Donahue TM (1964) Hα excitation in the hydrogen near the Earth. Planet Space Sci 12:149–159

    Article  Google Scholar 

  • Donahue TM (1968) Discussion of paper by Y. Kondo and J.E. Kupperian, Jr., Interaction of neutral hydrogen and charged particles in the radiation belts: the consequent Lyman-alpha emission. J Geophys Res 73: 4455–4457

    Article  Google Scholar 

  • Doschek GA, Behring WE, Feldman U (1974) The profiles of the solar HeI and HeII lines at 584, 537 and 304 Å. Astrophys J 190:L141–L142

    Article  Google Scholar 

  • Dvornikov IV, Kulagina LV (1984) The quenching mechanism of the O2 (b1ς g +) by atomic oxygen. Optics Spectroscopy 57:1015–1021

    Google Scholar 

  • Eather RH (1968) Discussion of paper by Yoji Kondo and James E. Kupperian, Jr., Interaction of neutral hydrogen and charged particles in the radiation belts: the consequent Lyman-alpha emission. J Geophys Res 73:3599–3600

    Article  Google Scholar 

  • Elvey CT (1942) Light of the night sky. Rev Modern Phys 14:140–150

    Article  Google Scholar 

  • Elvey CT (1943) Observations of the light of the night sky with photoelectric photometer. Astrophys J 97:65–71

    Article  Google Scholar 

  • Evans WFJ, Llewellyn EJ, Vallance Jones A (1972) Altitude distribution of the O2(1δ) nightglow emission. J Geophys Res 77:4899–4901

    Article  Google Scholar 

  • Fallon RJ, Tobias I, Vanderlice JT (1961) Potential energy curve for OH. J Chem Phys 34:167–168

    Article  Google Scholar 

  • Fatkullin MN (1982) Physics of the ionosphere. In: Total results of the Science and Technique. Geomagnetism and upper layers of the atmosphere, Vol 6. VINITI, Moscow, pp 4–224

    Google Scholar 

  • Fedorova NI (1962) Twilight fluorescence of the 10830 A helium emission. Izvestiya USSR Acad Sci Geophys Ser N 4:538–547

    Google Scholar 

  • Fedorova NI (1967) Twilight emission of helium at high latitudes. In: Krassovsky VI (ed) Aurorae and Airglow N 13. USSR Academic Science Publishing House, Moscow, pp 53–63

    Google Scholar 

  • Ferguson AF, Parkinson D (1963) The hydroxyl bands in the nightglow. Planet Space Sci 11:149–159

    Article  Google Scholar 

  • Ferguson EE, Fehsenfeld FC, Dunkin DB, Schmeltekopf AL, Schiff HI (1964) Laboratory studies of helium ion loss processes of interest in the ionosphere. Planet Space Sci 12:1169–1171

    Article  Google Scholar 

  • Filipp ND, Oraevsky VN, Blaunstein NSh, Ruzhin YuYa (1986) Evolution of the artificial plasma inhomogeneities in the Earth’ ionosphere. Gusev VD (ed) Stiintsa, Kishinev

    Google Scholar 

  • Findlay FD (1969) Relative band intensities in the atmospheric and infrared atmospheric systems of molecular oxygen. Can J Phys 47:687–691

    Google Scholar 

  • Finlayson-Pitts BJ, Kleindienst TE (1981) The reaction of hydrogen atoms with ozone as a source of vibrationally excited OH(X2ϖi)v;=;9 for kinetic studies. J Chem Phys 74:5643–5658

    Article  Google Scholar 

  • Fiocco G, Fua D, Visconti G (1974) Origin of the upper atmospheric Na from sublimating dust: a model. Ann Géophys 30:517–528

    Google Scholar 

  • Fishkova LM (1963) On the spatial distribution and variations of the Hα emission in the night sky. In: Krassovsky VI (ed) Aurorae and Airglow, N 10. USSR Academic Science Publishing House, Moscow, pp 35–39

    Google Scholar 

  • Fishkova LM (1969) On distribution of intensity in a complete spectrum of the night sky luminescence in the region 5500–6700 A. Geomagn Aeronomy 9:568–570

    Google Scholar 

  • Fishkova LM (1970) Nightglow continuum in the visual region. In: Kharadze EK (ed) Bull Abastumani astrophys observ. N 39. pp 117–150

    Google Scholar 

  • Fishkova LM (1972) The investigation of the upper atmosphere and geocorona hydrogen by observations of the Hα emission line in the airglow spectrum. In: Fishkova LM, Kharadze EK (eds) Bull Abastumani astrophys observ N 42. pp 131–181

    Google Scholar 

  • Fishkova LM (1976) Regular nocturnal and seasonal variations of the emission intensity of OH, NaD, 5577 A of the upper atmosphere. In: Krassovsky VI (ed) Aurorae and Airglow. N 24. Soviet Radio, Moscow, pp 5–15

    Google Scholar 

  • Fishkova LM (1979) Nocturnal sodium emission in the Earth’ upper atmosphere. In: Problems of the atmospheric optics. Leningrad State University, Leningrad, pp 154–172

    Google Scholar 

  • Fishkova LM (1983) The night airglow of the Earth mid-latitude upper atmosphere. Shefov NN (ed) Metsniereba, Tbilisi

    Google Scholar 

  • Fishkova LM, Markova GV (1958) On the Hα line in the night sky spectrum. Astron Circ USSR Academic Science 196:8–9

    Google Scholar 

  • Fishkova LM, Martsvaladze NM (1967) On variations Hα emission and distribution of hydrogen in the upper atmosphere in Abastumani. In: Krassovsky VI (ed) Aurorae and Airglow. N 13. USSR Acad Science Publishing House, Moscow, pp 69–72

    Google Scholar 

  • Fishkova LM, Shcheglov PV (1972) The diurnal variations of the night airglow Hα emission. In: Fishkova LM, Kharadze EK (eds) Bull Abastumani astrophys observ. N 42. pp 29–36

    Google Scholar 

  • Fontijn A, Schiff HI (1961) Absolute rate constant for light emission of the air afterglow reaction for the wavelength region 3875–6200 Å. In: Cadle RD (ed) Chemical reactions in the lower and upper atmosphere. Interscience, New York, pp 239–254

    Google Scholar 

  • Fontijn A, Meyer CB, Schiff HI (1964) Absolute quantum yield measurements of the NO + O reaction and its use as a standard for chemiluminescent reactions. J Chem Phys 40:64–70

    Article  Google Scholar 

  • Frederick JE, Rusch DW, Victor GA, Sharp WE, Hays PB, Brinton HC (1976) The OI (λ 5577 Å) airglow: observations and excitation mechanisms. J Geophys Res 81:3923–3930

    Google Scholar 

  • French WJR, Burns GB, Finlayson K, Greet PA, Lowe RP, Williams PFB (2000) Hydroxyl(6–2) airglow emission intensity ratios for rotational temperature determination. Ann Geophys 18:1293–1303

    Google Scholar 

  • Galperin GI (1956a) Ration of the intensity components of the sodium yellow doublet in the twilight spectrum. Astron Reports 33:173–181

    Google Scholar 

  • Galperin GI (1956b) The ratio of the intensities of the components of the sodium doublet in the twilight spectrum. In: Armstrong EB, Dalgarno A (eds) The airglow and the aurorae. Pergamon Press, London, pp 91–94

    Google Scholar 

  • Gadsden M (1969) Antarctic twilight observations. 1. Search for metallic emission lines. Ann Géophys 25:119–126

    Google Scholar 

  • Gadsden M, Marovich E (1973) The nightglow continuum. J Atmos Terr Phys 35:1601–1614

    Article  Google Scholar 

  • Gadsden M, Salmon K (1958) Presence of 6707 Å radiation in the twilight sky. Nature 182:1598

    Article  Google Scholar 

  • Gardner CS, Voelz DG (1985) Lidar measurements of gravity wave saturation effects in the sodium layer. Geophys Res Lett 12:765–768

    Article  Google Scholar 

  • Gardner CS, Voelz DG, Sechrist CF, Segal AC (1986) Lidar studies of the nighttime sodium layer over Urbana, Illinois. 1. Seasonal and nocturnal variations. J Geophys Res 91A:13659–13673

    Article  Google Scholar 

  • Gattinger RL (1971) Interpretation of airglow in terms of excitation mechanisms. In: McCormac BM (ed) The radiating atmosphere. D Reidel Publishing Company, Dordrecht-Holland, pp 51–63

    Google Scholar 

  • Gattinger RL, Vallance Jones A (1973) Observation and interpretation of hydroxyl airglow emissions. In: McCormac BM (ed) Physics and chemistry of upper atmospheres. D Reidel Publishing Company, Dordrecht-Holland, pp 184–192

    Google Scholar 

  • Gershenzon YuM, Grigor’eva VM, Konoplev AV, Rosenstein VB (1985) An analysis of the influence of the vibrationally excited ozone on the ozone and atomic oxygen concentrations in the terrestrial upper atmosphere. Russian J Chem Phys 4:544–550

    Google Scholar 

  • Gilmore FR (1965) Potential energy curves for N2, NO, O2 and corresponding ions. J Quant Spectrosc Radiat Transfer 5:369–390

    Article  Google Scholar 

  • Gindilis LM (1965) The absolute measurements of the nightglow continuum. In: Krassovsky VI (ed) Aurorae and Airglow. N 11. Nauka, Moscow, pp 26–34

    Google Scholar 

  • Givishvili GV, Leshchenko LN, Lysenko EV, Perov SP, Semenov AI, Sergeenko NP, Fishkova LM, Shefov NN (1996) Long-term trends of some characteristics of the Earth’s atmosphere. I. Experimental results. Izvestiya Atmos Oceanic Phys 32:303–312

    Google Scholar 

  • Golde MF, Roche AE, Kaufman F (1973) Absolute rate constant for the O + NO chemiluminescence in the near infrared. J Chem Phys 59:3953–3959

    Article  Google Scholar 

  • Goldman A, Schoenfeld WG, Goorvitch D, Chackerian C, Dothe H, Mélen F, Abrams MC, Selby JEA (1998) Updated line parameters for OH X2ϖ - X2ϖ (v′′, v) transitions. J Quant Spectrosc Radiat Transfer 59:453–469

    Article  Google Scholar 

  • Golitsyn GS, Semenov AI, Shefov NN, Khomich VYu (2006) The response of the middle atmosphere temperature on the solar activity during various seasons. Phys Chem Earth 31:10–15

    Google Scholar 

  • Goorvitch D, Goldman A, Dothe H, Tipping RH, Chackerian C (1992) Hydroxyl X2ϖ pure rotational transitions J Geophys Res 97D:20771–20786

    Google Scholar 

  • Gopstein NM, Kushpil BI (1964) Dayglow of the upper atmosphere of the Earth in the 1.25 mcm. Cosmic Res 2:619–622

    Google Scholar 

  • Gordiets BF, Markov MN (1983) IR-radiarion and NO concentration in the essentially heated upper atmosphere. Geomagn Aeronomy 23:446–450

    Google Scholar 

  • Gordiets BF, Markov MN, Shelepin LA (1978) The theory of the infrared radiation of the near-earth space. In: Trans Physical Institute Acad Sci. Infrared radiation in the Earth’ atmosphere and in space, Vol 105. Nauka, Moscow, pp 7–71

    Google Scholar 

  • Gordiets BF, Osipov AI, Shelepin LA (1980) Kinetic processes in gases and molecular lasers. Nauka, Moscow

    Google Scholar 

  • Graham DA, Ichikawa T, Kim JS (1971) Observations of sodium, lithium and potassium twilight glow at Moscow, Idaho, USA. Ann Géophys 27:483–491

    Google Scholar 

  • Granier C, Jégou JP, Megie G (1985) Resonant lidar detection of Ca and Ca+ in the upper atmosphere. Geophys Res Lett 12:655–658

    Article  Google Scholar 

  • Granier C, Jégou JP, Megie G (1989) Iron atoms and metallic species in the Earth’s upper atmosphere. Geophys Res Lett 16:243–246

    Article  Google Scholar 

  • Grebowsky JM, Reese N (1989) Another look at equatorial metallic ions in the F region. J Geophys Res 94A:5427–5440

    Article  Google Scholar 

  • Green AES, Barth CA (1967) Calculations of the photoelectron excitation of the dayglow. J Geophys Res 72:3975–3986

    Google Scholar 

  • Green AES, Dutta SK (1967) Semi-empirical cross sections for electron impacts. J Geophys Res 72:3933–3941

    Google Scholar 

  • Green AES, Sawada T (1972) Ionization cross sections and secondary electron distribution. J Atmos Terr Phys 34:1719–1728

    Article  Google Scholar 

  • Green AES, Stolarski RS (1972) Analytical models of electron impact excitation cross sections. J Atmos Terr Phys 34:1703–1717

    Article  Google Scholar 

  • Greer RGH, Best GT (1967) A rocket-borne photometric investigation of the oxygen lines at 5577 Å and 6300 Å, the sodium D-lines and the continuum at 5300 Å in the night airglow. Planet Space Sci 15:1857–1881

    Article  Google Scholar 

  • Greer RGH, Llewellyn EJ, Solheim BH, Witt G (1981) The excitation of O2 (b1ςg +) in the nightglow. Planet Space Sci 29:383–389

    Article  Google Scholar 

  • Greer RGH, Murtagh DP, McDade IC, Dickinson PHG, Thomas L, Jenkins DB, Stegman J, Llewellyn EJ, Witt G, Mackinnon DJ, Williams ER (1986) ETON 1: A data base pertinent to the study of energy transfer in the oxygen nightglow. Planet Space Sci 34:771–788

    Article  Google Scholar 

  • Greet PA, Innis J, Dyson PL (1994) High-resolution Fabry-Perot observations of mesospheric OH (6–2) emissions. Geophys Res Lett 21:1153–1156

    Article  Google Scholar 

  • Grigor’eva VM, Gershenzon YuM, Shalashilin DV, Umanskii SYa (1994) A new kinetic mechanism of the hydroxyl emission of the night sky and the peculiarities of the vibrational relaxation of the OH upper levels (v = 7–9) by O2 . Russian J Chem Phys 13:3–25

    Google Scholar 

  • Grigor’eva VM, Gershenzon YuM, Semenov AI, Umanskii SYa, Shalashilin DV, Shefov NN (1997) Excitation kinetics of the mesopause hydroxyl emission and the role of vibrational relaxation of upper vibrational levels. Geomagn Aeronomy 37:94–100

    Google Scholar 

  • Grossmann KU, Offermann D (1978) Atomic oxygen emission at 63 μm as a cooling mechanism in the thermosphere and ionosphere. Nature (London) 276:594–595

    Article  Google Scholar 

  • Grossmann KU, Barthol P, Frings W, Hennig R, Offermann D (1983) A new spectrometric measurement of atmospheric 63 μm emission. Adv Space Res 2:111–114

    Article  Google Scholar 

  • Gurvich AS, Vorobiev VV, Savchenko SA, Pakhomov AI, Padalka GI, Shefov NN, Semenov AI (2002) The 420–530 nm region nightglow of the upper atmosphere as measured onboard Mir research platform in 1999. Geomagn Aeronomy 42:514–519

    Google Scholar 

  • Gush HP, Buijs HL (1964) The near infrared spectrum of the night airglow observed from high altitude. Can J Phys 42:1037–1045

    Google Scholar 

  • Harang O, Pettersen H (1967) Variation in width of the Hα – line in aurora. Planet Space Sci 15:1599–1603

    Article  Google Scholar 

  • Harrison AW, Cairns CD (1969) Helium emission (1.083 μ) in sunlit aurora. Planet Space Sci 17:1213–1219

    Article  Google Scholar 

  • Haslett JC, Fehsenfeld FC (1969) Ratio of the O2 (1δg -3ςg -) (0,0), (0,1) transitions. J Geophys Res 74:1878–1879

    Article  Google Scholar 

  • Hasson V, Nicholls RW, Degen V (1970) Absolute intensity measurements on the A3ςu + -X3ςg - Herzberg I band system of molecular oxygen. J Phys B 3:1192–1194

    Article  Google Scholar 

  • Heaps HS, Herzberg G (1952) Intensity distribution in the rotation-vibration spectrum of the OH molecule. Zeits Phys 133:48–64

    Article  Google Scholar 

  • Helmer M, Plane JMC (1993) A study of the reaction NaO2 + O to NaO + O2: implications for the chemistry of sodium in the upper atmosphere. J Geophys Res 98D:23207–23222

    Article  Google Scholar 

  • Hennes JP (1966) Measurement of the ultraviolet nightglow spectrum. J Geophys Res 71:763–770

    Google Scholar 

  • Henriksen K, Sukhoivanenko PYa (1982) The detection and interpretation of the orthohelium emission at 5876 A in aurora. Planet Space Sci 30:695–699

    Article  Google Scholar 

  • Henry RJW (1970) Photoionization cross-sections for atoms and ions of carbon, nitrogen, oxygen and neon. Astrophys J 161:1153–1155

    Article  Google Scholar 

  • Heppner JP, Meredith LH (1958) Nightglow emission altitudes from rocket measurements. J Geophys Res 63:51–65

    Article  Google Scholar 

  • Herman R, Herman L, Gauzit J (1942) Spectre du ciel nocturne dans le proche infrarouge. Cahiers Phys 12:46–48

    Google Scholar 

  • Hernandez G (1971) The signature profiles of O(1S) in the airglow. Planet Space Sci 19:467–476

    Article  Google Scholar 

  • Hernandez G (1975) Reaction broadening of the line profiles of atomic sodium in the night airglow. Geophys Res Lett 2:103–105

    Article  Google Scholar 

  • Hernandez G, Fraser J, Smith RW (1993) Mesospheric 12-hour oscillation near South Pole,Antarctica. Geophys Res Lett 20:1787–1790

    Article  Google Scholar 

  • Herschbach DR, Kolb CE, Worsnop DR, Shi X (1992) Excitation mechanism of the mesospheric sodium nightglow. Nature (London) 356:414–416

    Article  Google Scholar 

  • Herzberg G (1945) Infrared and Raman spectra of polyatomic molecules. Van Nostrand Reinhold Co, New York

    Google Scholar 

  • Herzberg G (1950) Molecular spectra and molecular structure. I. Spectra of diatomic molecules, 2nd edn. Van Nostrand Reinhold Co, New York

    Google Scholar 

  • Herzberg G (1951) The atmospheres of the planets. J Roy Astron Soc Canada 45:100–123

    Google Scholar 

  • Herzberg G (1971) The spectra and structures of simple free radicals. Cornell University Press, Ithaca and London

    Google Scholar 

  • Hinteregger HE (1976) EUV fluxes in the solar spectrum below 2000 Å. J Atmos Terr Phys 38:791–806

    Article  Google Scholar 

  • Hocking WK (1985) Turbulence in the altitude region 80–120 km. In: Labitzke K, Barnett JJ, Edwards B (eds) Handbook for MAP, Vol 16. SCOSTEP, Urbana, pp 290–304

    Google Scholar 

  • Hohmann J, Müller G, Schönnenbeck G, Stuhl F (1994) Temperature-dependent quenching of O2(b1ςg) by H2, D2, CO2, HN3, DN3, HNCO, and DNCO. Chem Phys Lett 217:577–581

    Article  Google Scholar 

  • Hotlzclaw KW, Person JC, Green BD (1993) Einstein coefficients for emission from high rotational states of the OH(X2ϖ) radical. J Quant Spectrosc Radiat Transfer 49:223–235

    Article  Google Scholar 

  • Holtzclaw KW, Upschulte BL, Caledonia GE, Cronin JF, Green BD, Lipson SJ, Blumberg WAM, Dodd JA (1997) Rotational relaxation of high-N states of OH(X2ϖ, v=1-3) by O2. J Geophys Res 102A:4521–4528

    Article  Google Scholar 

  • Howell CD, Michelangeli DV, Allen M, Yung YI, Thomas RJ (1990) SME observation of O2 (a1δg) nightglow: an assessment of the chemical production mechanism. Planet Space Sci 38:529–537

    Article  Google Scholar 

  • Huber KP, Herzberg G (1979) Molecular spectra and molecular structure. IV. Constants of diatomic molecules. Van Nostrand Reinhold Co, New York

    Google Scholar 

  • Hudson RD (1971) Critical review of ultraviolet photoabsorption cross sections for molecules of astrophysical and aeronomic interest. Rev Geophys Space Phys 9:305–406

    Article  Google Scholar 

  • Hudson KD, Carter VL (1969) Absorption in the spectral range of the Schumann-Runge bands. Can J Chem 47:1840–1846

    Article  Google Scholar 

  • Hui KK, Cool TA (1978) Experiments concerning the laser-enhanced reaction between vibrationally excited O3 and NO. J Chem Phys 68:1022–1037

    Article  Google Scholar 

  • Hunten DM (1956) Seasonal variations of twilight sodium emission. In: Armstrong EB, Dalgarno A (eds) The airglow and the aurorae. Pergamon Press, London, pp 114–121

    Google Scholar 

  • Hunten DM (1967) Spectroscopic studies of the twilight airglow. Space Sci Rev 6:493–573

    Article  Google Scholar 

  • Hunten DM, Wallace L (1967) Rocker measurements of the sodium dayglow. J Geophys Res 72:69–79

    Article  Google Scholar 

  • Huruhata M, Nakamura T, Steiger WR (1967) A rocket observation of (OI) 5577 Å emission and continuum at 5300 Å in night airglow. Rep Ionosph Space Res Japan 21:229–232

    Google Scholar 

  • IAPh (1994) Obukhov Institute of Atmospheric Physics of the Russian Academy of Sciences. Booklet. N 4462M. VneshTorgIzdat, Moscow

    Google Scholar 

  • Ignatiev VM (1977a) Unusual profiles of the 5577 A and 6300 A emissions in aurorae. Astron Circ USSR Acad Sci 940:2–4

    Google Scholar 

  • Ignatiev VM (1977b) Peculiarities of contours of 5577 A and 6300 A lines in auroras. Geomagn Aeronomy 17:153–154

    Google Scholar 

  • Ignatiev VM, Yugov VA (1995) Interferometry of the large-scale dynamics of the high-latitudinal thermosphere. Shefov NN (ed) Yakut Scientific Centre Siberian Branch RAN, Yakutsk

    Google Scholar 

  • Ivanov VA, Prikhod’ko AS, Skoblo YuA (1991) Deactivation of the 21S state of atomic helium by low-velocity electrons. Optics Spectroscopy 70:507–510

    Google Scholar 

  • Ivanov-Kholodny GS, Mikhailov AV (1980) Ionospheric state forecast. Hydrometeoizdat, Leningrad

    Google Scholar 

  • Ivanov-Kholodny GS, Nikol’sky GM (1969) Sun and ionosphere. Nauka, Moscow

    Google Scholar 

  • Ivanov-Kholodny GS, Nusinov AA (1987) Ultraviolet radiation of the Sun and its influence on the upper atmosphere and ionosphere. In: Total results of the Science. Investigations of the cosmic processes, Vol 26. VINITI, Moscow, pp 80–154

    Google Scholar 

  • Izod TPJ, Wayne RP (1968) The formation, reaction and deactivation of O2 (b1ςg +). Proc Roy Soc London A 308:81–94

    Article  Google Scholar 

  • Jasperse JR (1977) Electron distribution function and ion concentrations in the Earth’s lower ionosphere from Boltzmann–Fokker–Planck theory. Planet Space Sci 25:743–756

    Article  Google Scholar 

  • Jégou JP, Granier C, Chanin ML, Megie G (1985a) General theory of the alkali metals present in the earth’s upper atmosphere. I. Flux model: chemical and dynamical processes. Ann Geophys 3:163–175

    Google Scholar 

  • Jégou JP, Granier C, Chanin ML, Megie G (1985b) General theory of the alkali metals present in the earth’s upper atmosphere. II. Seasonal and meridional variations. Ann Geophys 3:299–312

    Google Scholar 

  • Johnson BR, Winter NW (1977) Classical trajectory study of the effect of vibrational energy on the reaction of molecular hydrogen with atomic oxygen. J Chem Phys 66:4116–4120

    Article  Google Scholar 

  • Johnston JE, Broadfoot AL (1993) Midlatitude observations of the night airglow: implications to quenching near the mesopause. J Geophys Res 98A:21593–21603

    Article  Google Scholar 

  • Jones DG, Lambert JD, Stretton JL (1965) Vibrational relaxation in mixtures containing oxygen. Proc Phys Soc London 86:857–860

    Article  Google Scholar 

  • Jusick AT, Watson CE, Peterson LR, Green AES (1967) Electron impact cross sections for atmospheric species. 1. Helium. J Geophys Res 72:3943–3951

    Google Scholar 

  • Kaliteevsky NI, Chaika MP (1970) Fabry-Perot interferometer and its some applications in the spectroscopy. In: Frish SE (ed) Spectroscopy of the gaseous discharge plasma. Nauka, Leningrad, pp 160–200

    Google Scholar 

  • Karmilova LB, Kondratiev VN (1951) Measurements of the atomic oxygen concentration in the flames with aid of NO. J Phys Chem 25:312–322

    Google Scholar 

  • Karyagina ZV (1962) The hydroxyl emission in the airglow spectrum according to observations in Alma-Ata. In: Krassovsky VI (ed) Aurorae and Airglow. N 8. USSR Academic Science Publishing House, Moscow, pp 6–8

    Google Scholar 

  • Karyagina ZV, Tulenkova LN (1959) Spectrophotometric investigation of the continuum and emission spectrum of the night sky in the visual spectral region. Izvestiya Astrophys. Institute Kazakh. SSR Acad Sci 9:86–95

    Google Scholar 

  • Kaufman F (1969) Neutral reactions involving H and other minor constituents. Can J Chem 47:1917–1926

    Article  Google Scholar 

  • Kaye JA (1988) On the possible role of the reaction O + HO2 to OH + O2 in OH airglow. J Geophys Res 93:285–288

    Article  Google Scholar 

  • Kennealy JP, Del Greco FP, Caledonia GE, Green BD (1978) Nitric oxide chemiexcitation occurring in the reaction between metastable nitrogen atoms and oxygen molecules. J Chem Phys 69:1574–1584

    Article  Google Scholar 

  • Kenner RD, Ogrizlo EA (1984) Orange chemiluminescence from NO2. J Chem Phys 80:1–6

    Article  Google Scholar 

  • Khayar A, Bonamy J (1987) Calculation of mean collision cross sections of free radical OH with foreign gases. J Quant Spectrosc Radiat Transfer 28:199–212

    Article  Google Scholar 

  • Khvorostovskaya LE, Potekhin IYu, Shved GM, Ogibalov BP, Uzyukova TV (2002) Measurement of the rate constant for quenching CO2 (0110) by atomic oxygen at low temperatures: reassessment of the rate of cooling by the CO2 15 μm emission in the lower thermosphere. Izvestiya Atmos Oceanic Phys 38:613–624

    Google Scholar 

  • Khvostikov IA (1937) Luminescence of the night sky, Vavilov SI (ed) USSR Academic Science Publishing House, Moscow, Leningrad

    Google Scholar 

  • Khvostikov IA (1948) Luminescence of the night sky, 2nd edn. Vavilov SI (ed) USSR Acad Sci Publ House, Moscow, Leningrad

    Google Scholar 

  • Kirchhoff VWJH (1986a) Comment on General theory of the alkali metals present in the Earth’s upper atmosphere. Ann Geophys 4:413–418

    Google Scholar 

  • Kirchhoff VWJH (1986b) Theory of the atmospheric sodium layer: a review. Can J Phys 64:1664–1672

    Google Scholar 

  • Kirchhoff VWJH, Clemesha BR (1983) Eddy diffusion coefficients in the lower thermosphere. J Geophys Res 88:5765–5768

    Article  Google Scholar 

  • Kistiakowsky GB, Tabbutt FD (1959) Gaseous detonations. XII. Rotational temperatures of the hydroxyl free radicals. J Chem Phys 30:577–581

    Article  Google Scholar 

  • Knutsen K, Copeland RA (1993) Vibrational relaxation of OH(X2ϖ, v = 7,8) by O2, N2, N2O and CO2. Abstract. EOS, Trans. AGU, Vol 43. Fall Meeting Suppl. p 472

    Google Scholar 

  • Kondo Y, Kupperian JE (1967) Interaction of the neutral hydrogen and charged particles in the radiation belts: the consequent Lyman-alpha emission. J Geophys Res 72:6091–6097

    Article  Google Scholar 

  • Kondratiev VN (1936) The elementary chemical processes. ChimTheoret, Leningrad

    Google Scholar 

  • Kondratiev VN (1958) Kinetic of the chemical gaseous reactions. USSR Academic Science Publishing House, Moscow

    Google Scholar 

  • Kondratiev VN, Nikitin EE (1974) Kinetic and mechanism of the gaseous phase reactions. Nauka, Moscow

    Google Scholar 

  • Kondratiev VN, Nikitin EE (1981) Chemical processes in gases. Nauka, Moscow

    Google Scholar 

  • Kovács I (1969) Rotational structure in the spectra of diatomic molecules. Akadémiai Kiadó,Budapest

    Google Scholar 

  • Krasnopolsky VA (1987) Airglow physics of the planetary and comet atmospheres. Nauka, Moscow

    Google Scholar 

  • Krassovsky VI (1949) On the night sky radiation in the infrared spectral region. Dokl USSR Acad Sci 66:53–54

    Google Scholar 

  • Krassovsky VI (1950a) New data on the night sky radiation in the 8800–11000 A region. Dokl USSR Acad Sci 70:999–1000

    Google Scholar 

  • Krassovsky VI (1950b) New emissions of the night sky in the 8800–11000 A region. Izvestiya Crimea astrophys. observ. USSR Acad Sci 5:100–104

    Google Scholar 

  • Krassovsky VI (1950c) Nature of the infrared luminescence of the night sky. Dokl USSR Acad Sci 73:679–682

    Google Scholar 

  • Krassovsky VI (1951a) On the mechanism of the night sky luminescence. Dokl USSR Acad Sci 77:395–398

    Google Scholar 

  • Krassovsky VI (1951b) Influence of the water vapor and carbon oxides on the night sky luminescence. Dokl USSR Acad Sci 78:669–672

    Google Scholar 

  • Krassovsky VI (1959) Energy sources of the upper atmosphere. Planet Space Sci 1:14–19

    Article  Google Scholar 

  • Krassovsky VI (1961) On the nature of the OH emission in the upper atmosphere. In: Krassovsky VI (ed) Spectral, electrophotometrical and radar researches of aurorae and airglow. N 5. USSR Academic Science Publishing House, Moscow, pp 29–31

    Google Scholar 

  • Krassovsky VI (1963a) Chemistry of the upper atmosphere. In: Priester W (ed) Space Research, Vol 3. North-Holland Publ Co, Amsterdam, pp 96–116

    Google Scholar 

  • Krassovsky VI (1963b) The hydroxyl emission in the upper atmosphere. In: Krassovsky VI (ed) Aurorae and Airglow. N 10. USSR Academic Science Publishing House, Moscow, pp 24–34

    Google Scholar 

  • Krassovsky VI (1968a) Heating of the upper atmosphere during geomagnetic disturbances. Nature (London) 217:1136

    Article  Google Scholar 

  • Krassovsky VI (1978b) Discussion of paper by Y. Kondo and J.E. Kupperian, Jr., Interaction of neutral hydrogen and charged particles in the radiation belts: the consequent Lyman-alpha emission. J Geophys Res 73:6402–6403

    Article  Google Scholar 

  • Krassovsky VI (1969) The upper atmosphere as a regulator of geomagnetic storms, substorms and aurorae. Geomagn Aeronomy 9:29–40

    Google Scholar 

  • Krassovsky VI (1971a) The calms and the storms in the upper atmosphere (Physics of the upper atmosphere and near-Earth space). Nauka, Moscow

    Google Scholar 

  • Krassovsky VI (1971b) Atmospheric Hα emission of the atomic hydrogen by observations in Zvenigorod, Abastumani, Alma-Ata. Cosmic Res 9:418–429

    Google Scholar 

  • Krassovsky VI (1972) Infrasonic variations of the OH emission in the upper atmosphere. Ann Géophys 28:739–746

    Google Scholar 

  • Krassovsky VI (1978) NO, dissociation of H2O and winter anomaly of ionospheric absorption. Geomagn Aeronomy 18:151–153

    Google Scholar 

  • Krassovsky VI, Galperin YuI (1960) Review of observational results on the airglow and aurorae. In: Trans Intern Astron Union (Moscow 1958), Vol 10A. Cambridge University Press, Cambridge, pp 327–328

    Google Scholar 

  • Krassovsky VI, Shefov NN, Yarin VI (1961) On the OH airglow. J Atmos Terr Phys 21:46–53

    Article  Google Scholar 

  • Krassovsky VI, Shefov NN, Yarin VI (1962) Atlas of the airglow spectrum λ λ 3000–12400 Å. Planet Space Sci 9:883–915

    Article  Google Scholar 

  • Krassovsky VI, Shefov NN, Vaisberg OL (1966) Atomic hydrogen and helium in airglow. Ann Géophys 22:208–216

    Google Scholar 

  • Krassovsky VI, Semenov AI, Shefov NN, Yurchenko OT (1976) Predawn emission at 6300 Å and super-thermal ions from conjugate points. J Atmos Terr Phys 38:999–1001

    Article  Google Scholar 

  • Krassovsky VI, Potapov BP, Semenov AI, Shagaev MV, Shefov NN, Sobolev VG (1977) On the equilibrium nature of the rotational temperature of hydroxyl airglow. Planet Space Sci 25:596–597

    Article  Google Scholar 

  • Krassovsky VI, Rapoport ZTs, Semenov AI, Sobolev VG, Shefov NN (1980) Nitric oxide, water vapor, noctilucent clouds, emissions and radiowave absorption near the mesopause. Geomagn Aeronomy 20:657–663

    Google Scholar 

  • Krassovsky VI, Rapoport ZTs, Semenov AI (1982) New emissions of the upper atmosphere as a sequence of the anthropogenic influence on the ionosphere. Cosmic Res 20:237–243

    Google Scholar 

  • Krinberg IA (1978) The electron kinetic in the ionosphere and plasmasphere. Nauka, Moscow

    Google Scholar 

  • Kron GE (1950) Photoelectric measurements of night-sky radiation beyond 9000 Angstroms. Publ Astron Soc Pac 62:264–266

    Article  Google Scholar 

  • Kukuy AS, Zelenov VV, Dodonov AF, Grigor’eva VM, Gershenzon YuM (1996) Reaction of OH(v = 7÷ 9) + O2 = OH2 + O and its role in the kinetic mechanism of the hydroxyl emission in nightglow. Russian J Chem Phys 15:76–87

    Google Scholar 

  • Kupperian JE, Byram ET, Chubb TA, Friedman H (1959) Far ultraviolet radiation in the night sky. Planet Space Sci 1:3–6

    Article  Google Scholar 

  • Kurilo MJ, Braun W, Kaldor A, Freund SM, Wayne RP (1974) Infra-red laser enhanced reactions: chemistry of vibrationally excited O3 with NO and O2(1δ ). J Photochem 3:71–87

    Article  Google Scholar 

  • Kurt VG (1963) Neutral hydrogen in the near-earth neighbourhood and interplanetary space. Uspekhi Phys Nauk 81:249–270

    Google Scholar 

  • Kutepov AA, Shved GM (1978) Radiative transfer of the 15-μm CO2 band with the breakdown of local thermodynamic equilibrium in the Earth’s atmosphere. Izvestiya USSR Acad Sci Atmos Oceanic Phys 14:28–43

    Google Scholar 

  • Kutepov AA, Shved GM (1981) Radiation intensities of the 4, 3 and 15 mcm of CO2 in the Earth’ upper atmosphere for quiet conditions. Cosmic Res 19:483–486

    Google Scholar 

  • Kutepov AA, Shved GM (1985) On the cooling of the lower thermosphere by radiation in the 15-μm CO2 band. Izvestiya USSR Acad Sci Atmos Oceanic Phys 21:421–423

    Google Scholar 

  • Kvifte G (1961) Temperature measurements from OH bands. Planet Space Sci 5:153–157

    Article  Google Scholar 

  • Lambert JD (1962) Relaxation in gases. In: Bates DR (ed) Atomic and molecular processes. Academic Press, New York, pp 679–699

    Google Scholar 

  • Lang KR (1974) Astrophysical formulae. Springer-Verlag, Berlin

    Google Scholar 

  • Langhoff SR, Werner HJ, Rosmus P (1986) Theoretical transition probabilities for the OH Meinel system. J Mol Spectrosc 118:507–529

    Article  Google Scholar 

  • Lazarev AV, Zastenker NN, Trubnikov DN (2003) Rotational energy relaxation in the free azot stream. Russian J Chem Phys 22:10–15

    Google Scholar 

  • Lindinger W, Schmeltekopf AL, Fehsenfeld FC (1974) Temperature dependence of de-excitation rate constants of He(23S) by Ne, Ar, Xe, H2, N2, O2, NH3 and CO2. J Chem Phys 61:2890–2895

    Article  Google Scholar 

  • Link JK (1966) Measurement of the radiative lifetimes of the first excited states of Na, K, Rb, and Cs by means of the phase – shift method. J Opt Soc Amer 56:1195–1199

    Google Scholar 

  • Link R, Cogger LL (1988) A reexamination of the OI 6300 Å nightglow. J Geophys Res 93A:9883–9892

    Article  Google Scholar 

  • Link R, Cogger LL (1989) Correction to “A reexamination of the OI 6300 Å nightglow” by R. Link and L.L. Cogger. J Geophys Res 94A:1556

    Article  Google Scholar 

  • Llewellyn EJ, Evans WFJ (1971) The dayglow. In: McCormac BM (ed) The radiating atmosphere. D Reidel Publishing Company, Dordrecht, pp 17–33

    Google Scholar 

  • Llewellyn EJ, Long BH (1978) The OH Meinel bands in the airglow. The radiative lifetime. Can J Phys 56:581–586

    Google Scholar 

  • Llewellyn EJ, McDade IC (1996) A reference model for atomic oxygen in the terrestrial atmosphere. Adv Space Res 18:209–226

    Article  Google Scholar 

  • Llewellyn EJ, Solheim BH (1978) The excitation of the Infrared Atmospheric oxygen bands in nightglow. Planet Space Sci 26:533–538

    Article  Google Scholar 

  • Llewellyn EJ, Long BH, Solheim BH (1978) The quenching of OH* in the atmosphere. Planet Space Sci 25:525–531

    Article  Google Scholar 

  • López-Moreno JJ, Rodrigo R, Moreno F, Lopez-Puertaz M, Molina A (1987) Altitude distribution of vibrationally excited states of atmospheric hydroxyl at levels v = 2 to v = 7. Planet Space Sci 35:1029–1038

    Article  Google Scholar 

  • Losev SA, Umansky SYa, Yakubov IT (1995) Physical-chemical processes in the gaseous dynamics. In: Cherny GG, Losev SA (eds) Dynamics of the physical-chemical processes in the gas and plasma, Vol 1. Moscow State University Press, Moscow

    Google Scholar 

  • Lunt ST, Marston G, Wayne RP (1988) Formation of O2(a1δg) and vibrationally excited OH in the reaction between O atoms and HOx species. J Chem Soc Faraday Trans 2 84:899–912

    Article  Google Scholar 

  • Lytle EA, Hunten DM (1959) The ratio of sodium to potassium in the upper atmosphere. J Atmos Terr Phys 16:236–245

    Article  Google Scholar 

  • MacDonald RG, Buijs HL, Gush HP (1968) Spectrum of the night airglow between 3 and 4 microns. Can J Phys 46:2575–2578

    Google Scholar 

  • Machael JV, Payne WA, Whytock DA (1976) Absolute rate constants for O + NO + M (= He, Ne, Ar, Kr) to NO2 + M from 217–500 K. J Chem Phys 65:4830–4834

    Article  Google Scholar 

  • Makarova EA, Kharitonov AV (1972) Energy distribution in the solar spectrum. Nauka, Moscow

    Google Scholar 

  • Makarova EA, Kharitonov AV, Kazachevskaya TV (1991) The solar radiation flux. Nauka, Moscow

    Google Scholar 

  • Makarova NM, Mikirov AE, Smerkalov VA (1973) Generalized dependence of the terrestrial and water-surface albedo on the solar height over horizon. In: Trans Institute Applied Geophysics. Certain problems of upper atmospheric physics. N 17. Hydrometeoizdat, Moscow, pp 203–210

    Google Scholar 

  • Makhlauf UB, Picard RH, Winick JR (1995) Photochemical-dynamical modeling of the measured response of airglow to gravity waves. 1. Basic model for OH airglow. J Geophys Res 100D:11289–11311

    Google Scholar 

  • Malkin OA (1971) Relaxation processes in the gas. Atomizdat, Moscow

    Google Scholar 

  • Mange P (1973) Hydrogen and helium emissions. In: McCormac BM (ed) Physics and chemistry of upper atmospheres. D Reidel Publishing Company, Dordrecht, pp 248–259

    Google Scholar 

  • Manuilova RO, Shved GM (1989) The origin of the glow of vibrationally excited ozone in the atmosphere. In: Feldstein YaI, Shefov NN (eds) Aurorae and Airglow. N 33. VINITI, Moscow, pp 43–47

    Google Scholar 

  • Martsvaladze NM (1972) Spatial distribution of the upper atmosphere Hα emission. Its variations during the solar cycle and dependence on geomagnetic disturbances. In: Fishkova LM, Kharadze EK (eds) Bull Abastumani astrophys observ. N 42. pp 39–45

    Google Scholar 

  • Martsvaladze NM, Fishkova LM (1982) On the one possible reason of the irregular variations of the hydrogen emission of the upper atmosphere. Cosmic Res 20:773–775

    Google Scholar 

  • Martsvaladze NM, Fishkova LM, Shefov NN (1971) Disturbed variations of the hydrogen emission. Astron Circ USSR Acad Sci 619:5–6

    Google Scholar 

  • Massey HSW, Burhop EHS (1952) Electronic and ionic impact phenomena. Clarendon Press,Oxford

    Google Scholar 

  • Mathis JS (1957) Statistical equilibrium of triplet levels of neutral helium. Astrophys J 125:318–327

    Article  Google Scholar 

  • McClatchey RA, Benedict WS, Clough SA, Burch DE, Calfee RF, Fox K, Rothman LS, Garing JS (1973) AFCGL atmospheric absorption line parameters compilation. AFCRL-TR-73-0096. L.G. Hanscom Field. Ma., 01730, Begford N 434

    Google Scholar 

  • McDade IC, Llewellyn EJ (1986) The excitation of O(1S) and O2 bands in the nightglow: a brief review and preview. Can J Phys 64:1626–1630

    Google Scholar 

  • McDade IC, Llewellyn EJ (1987) Kinetic parameters related to sources and sinks of vibrationally excited OH in the night. J Geophys Res 92A:7643–7650

    Article  Google Scholar 

  • McDade IC, Llewellyn EJ (1988) Mesospheric oxygen atom densities inferred from night-time OH Meinel band emission rates. Planet Space Sci 36:897–905

    Article  Google Scholar 

  • McDade IC, Greer RGH, Murtagh DP (1984a) Thermospheric nitric oxide concentrations derived from a measurement of the altitude profile of the green nightglow continuum. Ann Geophys 2:487–494

    Google Scholar 

  • McDade IC, Murtagh DP, Greer RGH, Dickinson PHG, Witt G, Stegman J, Llewellyn EJ, Thomas L, Jenkins DB (1986a) ETON 2: Quenching parameters for the proposed precursors of O2 (b1ςg +) and O(1S) in the terrestrial nightglow. Planet Space Sci 34:789–800

    Article  Google Scholar 

  • McDade IC, Llewellyn EJ, Greer RGH, Murtagh DP (1986b) ETON 3: altitude profile of the nightglow continuum at green and near infrared wavelengths. Planet Space Sci 34:801–810

    Article  Google Scholar 

  • McDaniel EW (1964) Collision phenomena in ionized gases. John Wiley and Son Inc, New York

    Google Scholar 

  • Mcelroy MB (1965) Excitation of atmospheric helium. Planet Space Sci 13:403–433

    Article  Google Scholar 

  • McElroy MB, Hunten DM (1966) A method of estimating the Earth albedo for dayglow measurements. J Geophys Res 71:3635–3638

    Google Scholar 

  • McEwan MJ, Phillips LF (1975) Chemistry of the atmosphere. Edward Arnold, London

    Google Scholar 

  • McNeil WJ, Murad E, Lai ST (1995) Comprehensive model for the atmospheric sodium layer. J Geophys Res 100D:16847–16855

    Article  Google Scholar 

  • Megill AB, Roach FE (1961) The integrated star-light over the sky. Nat Bur Stand, Washington DC 106:1–76

    Google Scholar 

  • Meier RR (1969) Balmer Alpha and Balmer Beta in the hydrogen geocorona. J Geophys Res 74:3561–3574

    Article  Google Scholar 

  • Meier RR (1974) A survey of the ultraviolet airglow from 1216 to 304 Å. Ann Géophys 31:91–104

    Google Scholar 

  • Meier RR, Prinz DK (1970) Absorption of the solar Lyman alpha line by geocoronal atomic hydrogen. J Geophys Res 75:6969–6979

    Article  Google Scholar 

  • Meier RR, Carruther GR, Page TL, Lavasseur-Regourd AC (1977) Geocoronal Lyman β and Balmer α emissions measured during the Apollo 16 mission. J Geophys Res 82:737–739

    Article  Google Scholar 

  • Meier RR, Anderson DE, Paxton LJ, McCoy RP (1987) The OI 3d 3Do - 2p4 3P transition at 1026 A in the day airglow. J Geophys Res 92A:8767–8773

    Article  Google Scholar 

  • Meinel AB (1948) The near-infrared spectrum of the night sky and aurorae. Publ Astron Soc Pac 60:373–378

    Article  Google Scholar 

  • Meinel AB (1950a) Hydride emission bands in the spectrum of the night sky. Astrophys J 111:207

    Article  Google Scholar 

  • Meinel AB (1950b) OH emission bands in the spectrum of the night sky. I. Astrophys J 111:555–564

    Article  Google Scholar 

  • Meinel AB (1950c) OH emission bands in the spectrum of the night sky. II. Astrophys J 112:120–130

    Article  Google Scholar 

  • Meinel AB (1950d) O2 emission band in the infrared spectrum of the night sky. Astrophys J 112:464–468

    Article  Google Scholar 

  • Mies FH (1974) Calculated vibrational transition probabilities of OH(X2ϖ). J Mol Spectrosc 53:150–188

    Article  Google Scholar 

  • Miller JH, Boese RW, Giver LP (1969) Intensity measurements and rotational intensity distribution for the oxygen A-band. J Quant Spectrosc Radiat Transfer 9:1507–1517

    Article  Google Scholar 

  • Minnaert M, Mulders GFW, Houtgast J (1940) Photometric atlas of the solar spectrum from λ 3612 to λ 8771 Å. D Schnabel Amsterdam Kampert Helm, Amsterdam

    Google Scholar 

  • Mironov AV, Prokudina VS, Shefov NN (1959) Auroral observations on 10–11 February, 1958, Moscow. In: Krassovsky VI (ed) Spectral, electrophotometrical and radar researches of aurorae and airglow. N 1. USSR Acad Sci Publ House, Moscow, pp 20–24

    Google Scholar 

  • Misawa K, Takeuchi I (1982) Nightglow intensity variations in the O2(0–1) atmospheric band, the Na D lines, the OH (6–2) band, the yellow-green continuum at 5750 Å and the oxygen green line. Ann Géophys 38:781–788

    Google Scholar 

  • Mitchell ACG, Zemansky MW (1934) Resonance radiation and excited atoms. Cambridge University Press, Cambridge

    Google Scholar 

  • Mitra V (1974a) Origin of alkali metals in the Earth’s atmosphere. Ann Géophys 30:421–427

    Google Scholar 

  • Mitra V (1974b) Deposition of twilight lithium by a high altitude thermonuclear explosion. Ann Géophys 30:497–502

    Google Scholar 

  • Mlynczak MG, Nesbitt DJ (1995) The Einstein coefficient for spontaneous emission of the O2 (a1δg) state. Geophys Res Lett 22:1381–1384

    Article  Google Scholar 

  • Molher OC, Pierce AM, McMath RR, Goldberg L (1950) Photometric atlas of the infra-red solar spectrum λ 8465 to λ 25242 Å. Michigan University Press, Ann Arbor

    Google Scholar 

  • Molina A (1983) Sodium nightglow and gravity waves. J Atmos Sci 40:2444–2450

    Article  Google Scholar 

  • Moore CE (1949) Atomic energy levels, Vol 1. N 467. Nat Bur Stand, Washington DC

    Google Scholar 

  • Mott NF, Massey HSW (1965) The theory of atomic collisions, 3rd edn. Clarendon Press, Oxford

    Google Scholar 

  • Moussa HRM, de Heer FJ, Schutten J (1968) Excitation of helium by 0.05–6 keV electrons and polarization of the resulting radiation. Physica 40:517–549

    Article  Google Scholar 

  • Murphy RE (1971) Infrared emission of the OH in the fundamental and first overtone bands. J Chem Phys 54:4852–4859

    Article  Google Scholar 

  • Nagy AF, Liu SC, Baker DJ (1976) Vibrationally excited hydroxyl molecules in the lower atmosphere. Geophys Res Lett 3:731–734

    Article  Google Scholar 

  • Nasyrov GA (1967) Spatial variations of nightglow in the region λ 5893 A. In: Krassovsky VI (ed) Aurorae and Airglow. N 13. Nauka, Moscow, pp 10–12

    Google Scholar 

  • Nasyrov GA (2003) Statistical regularities of variations in the sodium nightglow observed in Ashkhabad during the solar activity minimum. Geomagn Aeronomy 43:402–404

    Google Scholar 

  • Nelson DD, Schiffman A, Nesbit DJ, Orlando JJ, Burkholder JB (1990) H + O3 Fourier-transform infrared emission and laser absorption studies of OH(X2ϖ) radical: an experimental dipole moment function and state-to-state Einstein A coefficients. J Chem Phys 93:7003–7019

    Article  Google Scholar 

  • Nicholls DC, Evans WFJ, Llewellyn EJ (1972) Collisional relaxation and rotational intensity distributions in spectra of aeronomic interest. J Quant Spectrosc Radiat Transfer 12:549–558

    Article  Google Scholar 

  • Nicolet M (1948) Deduction regarding the state of the high atmosphere. In: The emission spectra of the night sky and aurorae (Reports of the Gassiot Committee). Phys Soc London, pp 36–48

    Google Scholar 

  • Nicolet M (1962) Aeronomy. Preprint. Institut d’Astrophysique, Liège

    Google Scholar 

  • Nicolet M (1971) Aeronomic reactions of hydrogen and ozone. In: Fioccho G (ed) Mesospheric model and related experiments. D Reidel Publishing Company, Dordrecht, pp 1–51

    Google Scholar 

  • Nicolet M (1981) The solar spectral irradiance and its action in the atmospheric photodissociation processes. Planet Space Sci 29:951–974

    Article  Google Scholar 

  • Nicolet M (1984) On the photodissociation of water vapour in the mesopause. Planet Space Sci 32:871–880

    Article  Google Scholar 

  • Nicolet M (1989a) Solar spectral irradiances with their diversity between 120 and 900 nm. Planet Space Sci 37:1249–1289

    Article  Google Scholar 

  • Nicolet M (1989b) Aeronomic chemistry of ozone. Planet Space Sci 37:1621–1652

    Article  Google Scholar 

  • Nicolet M, Kennes R (1988) Aeronomic problems of molecular oxygen photodissociation–IV. The various parameters for the Herzberg continuum. Planet Space Sci 36:1069–1076

    Article  Google Scholar 

  • Nicolet M, Cieslik KS, Kennes R (1989) Aeronomic problems of molecular oxygen photodissociation–V. Predissociation in the Schumann-Runge bands of oxygen. Planet Space Sci 37:427–458

    Article  Google Scholar 

  • Nicovich JM, Wine PH (1987) Temperature dependence of the O + HO2 rate coefficient. J Phys Chem 91:5118–5123

    Article  Google Scholar 

  • Nikerov VA, Sholin GV (1985) A kinetic of the degradational processes. Energoatomizdat, Moscow

    Google Scholar 

  • Nikitin EE (1970) A theory of the elementary atomic-molecular processes in the gases. Chemistry, Moscow

    Google Scholar 

  • Noxon JF (1961) Observation of the (b1ςg + -a1δ g) transition in O2. Can J Phys 39:1110–1119

    Google Scholar 

  • Noxon JF (1978) The near infrared nightglow continuum. Planet Space Sci 26:105–115

    Article  Google Scholar 

  • Noxon JF, Vallance Jones A (1962) Observation of the (0,0) band of the (1δ g -3ς g - ) system of oxygen in the day and twilight airglow. Nature (London) 196:157–158

    Article  Google Scholar 

  • Ogawa T (1976) Excitation processes of infrared atmospheric emissions. Planet Space Sci 24:749–756

    Article  Google Scholar 

  • Ogawa T, Kondo Y (1977) Diurnal variability of thermospheric N and NO. Planet Space Sci 25:735–742

    Article  Google Scholar 

  • Ogawa T, Iwagami N, Nakamura M, Takano M, Tanabe H, Takeuchi A, Miyashita A, Suzuki K (1987) A simultaneous observation of the height profiles of the night airglow OI 5577 Å, O2 Herzberg and Atmospheric bands. J Geomag Geoelectr 39:211–228

    Google Scholar 

  • Offermann D, Grossmann KU (1978) Spectrometric measurement of atomic oxygen 63 μm emission in the thermosphere. Geophys Res Lett 5:387–390

    Article  Google Scholar 

  • Osipov AI (1985) Rotational relaxation in gases. Ingeneering-Physical J 49:154–170

    Google Scholar 

  • Pal SR (1973) Features of sodium emission in nightglow. Tellus 25:69–79

    Article  Google Scholar 

  • Patterson TNL (1967) Metastable helium in the upper atmosphere. Planet Space Sci 15:1219–1222

    Article  Google Scholar 

  • Pavlov AV (1996) Mechanism of the electron density depletion in the SAR arc region. Ann Geophys 14:211–212

    Article  Google Scholar 

  • Pavlov AV (1997) Subauroral red arcs as a conjugate phenomenon: comparison of OV1-10 satellite data with numerical calculations. Ann Geophys 15:984–998

    Article  Google Scholar 

  • Pavlov AB (1998) Interpreting the observations of auroral red arcs in magnetically conjugate regions. Geomagn Aeronomy 38:803–807

    Google Scholar 

  • Pavlov AV, Pavlova NM, Drozdov AB (1999) Production rate of O(1D), O(1S) and N(2D) in the subauroral red arc region. Geomagn Aeronomy 39:201–205

    Google Scholar 

  • Pendleton W, Espy P, Baker D, Steed A, Fetrow M, Henriksen K (1989) Observation of OH Meinel (7,4) P(N′′=13) transitions in the night airglow. J Geophys Res 94:505–510

    Article  Google Scholar 

  • Pendleton WR, Taylor MJ (2002) The impact of L-uncoupling on Einstein coefficients for the OH Meinel (6,2) band: implications for Q-branch rotational temperatures. J Atmos Solar-Terr Phys 64:971–983

    Article  Google Scholar 

  • Perminov VI, Semenov AI (1992) The nonequilibrium of the rotational temperature of OH bands under high level rotational excitation. Geomagn Aeronomy 32:306–308

    Google Scholar 

  • Perminov VI, Semenov AI, Shefov NN (1998) Deactivation of hydroxyl molecule vibrational states by atomic and molecular oxygen in the mesopause region. Geomagn Aeronomy38:761–764

    Google Scholar 

  • Perminov VI, Semenov AI, Bakanas VV, Zheleznov YuA, Khomich VYu (2004) Regular variations in the (0–1) band intensity of the oxygen emission Atmospheric system. Geomagn Aeronomy 44:498–501

    Google Scholar 

  • Phelps DH, Dalby FW (1965) Optical observations of the Stark effect of OH. Can J Phys 43:144–154

    Google Scholar 

  • Piterskaya NA, Shefov NN (1975) Intensity distribution of the OH rotation-vibration bands. In: Krassovsky VI (ed) Aurorae and Airglow. N 23. Nauka, Moscow, pp 69–122

    Google Scholar 

  • Plane JMC (1991) The chemistry of meteoric metals in the Earth’s upper atmosphere. Int Rev Phys Chem 10:55–106

    Article  Google Scholar 

  • Plane JMC, Cox RM, Qian J, Pfenninger WM, Papen GC, Gardner CS, Espy PJ (1998) Mesospheric Na layer at extreme high latitudes in summer. J Geophys Res 103D:6381–6389

    Article  Google Scholar 

  • Potter AE, Coltharp RN, Worley SD (1971) Mean radiative lifetime of vibrationally excited (v = 9) hydroxyl. Rate of the reaction of vibrationally excited hydroxyl (v = 9) with ozone. J Chem Phys 54:992–996

    Article  Google Scholar 

  • Prokudina VS (1959a) Observations of the line λ 6562 A in the night airglow spectrum. In: Krassovsky VI (ed) Spectral, electrophotometrical and radar researches of aurorae and airglow. N 1. USSR Academic Science Publishing House, Moscow, pp 43–44

    Google Scholar 

  • Prokudina VS (1959b) Determination of the hydroxyl rotational temperature in the upper atmosphere. Izvestiya USSR Acad Sci Ser Geophys 4:629–631

    Google Scholar 

  • Qian J, Gardner CS (1995) Simultaneous lidar measurements of mesospheric Ca, Na, and temperature profiles at Urbana, Illinois. J Geophys Res 100D:7453–7461

    Article  Google Scholar 

  • Rees MH (1989) Physics and chemistry of the upper atmosphere. Houghton JT, Rycroft MJ, Dessler AJ (eds) Cambridge University Press, Cambridge

    Google Scholar 

  • Reynard LM, Donaldson DJ (2001) OH production from the reaction of vibrationally excited H2 in the mesosphere. Geophys Res Lett 28:2157–2160

    Article  Google Scholar 

  • Richter ES, Rowlett JR, Gardner CS, Sechrist CF (1981) Lidar observations of the mesospheric sodium layer over Urbana, Illinois. J Atmos Terr Phys 43:327–337

    Article  Google Scholar 

  • Rishbeth H (1967) Transequatorial diffusion in the topside ionosphere. Planet Space Sci 15:1261–1265

    Article  Google Scholar 

  • Rishbeth H, Garriott OK (1969) Introduction to ionospheric physics. Academic Press, New York

    Google Scholar 

  • Roach FE (1964) The light of the night sky: astronomical interplanetary and geophysical. Space Sci Rev 3:512–540

    Article  Google Scholar 

  • Roach FE, Gordon JL (1973) The light of the night sky. D Reidel Publishing Company, Dordrecht, Holland

    Google Scholar 

  • Roach FE, Megill LR (1961) Integrated starlight over the sky. Astrophys J 133:228–242

    Article  Google Scholar 

  • Robley R (1973) Variation annuelle des luminances de l’émission continue atmosphérique et de la lumière zodiacalle du pole célestre. Ann Géophys 29:321–328

    Google Scholar 

  • Robley R, Vilkki E (1970) Le continuum dans la lumière du ciel nocturne. Ann Géophys 26:195–199

    Google Scholar 

  • Rodionov SF (1940) Light counter. J Exp Theor Phys 10:294–304

    Google Scholar 

  • Rothman LS, Benedict WS (1978) Infrared energy levels and intensities of carbon dioxide. Appl Opt 17:2605–2611

    Google Scholar 

  • Rothman LS, Clough SA, McClatchey RA, Young LG, Snider DE, Goldman A (1978) AFGL trace gas compilation. Appl Opt 17:507

    Google Scholar 

  • Rothman LS, Goldman A, Gillis JR, Gamache RR, Pickett HM, Poynter RL, Husson N, Chedin A (1983) AFGL trace gas compilation: 1982 version. Appl Opt 22:1616–1627

    Google Scholar 

  • Rottman GJ (1981) Rocket measurements of the solar spectral irradiance during solar minimum, 1972–1977. J Geophys Res 86A:6697–6705

    Article  Google Scholar 

  • Roux F, d’Incan J, Cerny D (1973) Experimental oscillator strengths in the infrared vibration-rotation spectrum of the hydroxyl radical. Astrophys J 186:1141–1156

    Article  Google Scholar 

  • Rundle HN (1960) Ionization of a static interplanetary gas and expected emission lines from this gas. Planet Space Sci 2:86–98

    Article  Google Scholar 

  • Rusanov VD, Fridman AA (1984) Physics of the chemically active plasma. Nauka, Moscow

    Google Scholar 

  • Sappey AD, Copeland RA (1990) Collision dynamics of OH(X2ϖi, v = 12). J Chem Phys 93:5741–5746

    Article  Google Scholar 

  • Saxon RP, Slanger TG (1986) Molecular oxygen absorption continua at 195–300 nm and O2 radiative lifetimes. J Geophys Res 91D:9877–9879

    Article  Google Scholar 

  • Schlapp RJ (1937) Fine structure in the 3ς ground state of the oxygen molecule, and the rotational intensity distribution in the atmospheric band. Phys Rev 51:343–345

    Article  Google Scholar 

  • Scholz K (1932) Zur quantenmechanischen Berechnung von Intensitäten ultrarotes Banden. Zeits Phys B 78:751–770

    Article  Google Scholar 

  • Schurin B, Ellis RE (1966) First and second – overtone intensity measurements for CO and NO. J Chem Phys 45:2528–2532

    Article  Google Scholar 

  • Semenov AI (1989a) The specific features of the green emission excitation process in the nocturnal atmosphere. In: Feldstein YaI, Shefov NN (eds) Aurorae and Airglow. N 33. VINITI, Moscow, pp 74–80

    Google Scholar 

  • Semenov AI (1989b) Relation between the ozone-hydrogen and superhydroxyl excitation mechanism of hydroxyl emission. Geomagn Aeronomy 29:687–689

    Google Scholar 

  • Semenov AI (1997) Long-term changes in the height profiles of ozone and atomic oxygen in the lower thermosphere. Geomagn Aeronomy 37:354–360

    Google Scholar 

  • Semenov AI, Shefov NN (1996) An empirical model for the variations in the hydroxyl emission. Geomagn Aeronomy 36:468–480

    Google Scholar 

  • Semenov AI, Shefov NN (1997a) An empirical model of nocturnal variations in the 557.7-nm emission of atomic oxygen. 1. Intensity. Geomagn Aeronomy 37:215–221

    Google Scholar 

  • Semenov AI, Shefov NN (1997b) An empirical model of nocturnal variations in the 557.7-nm emission of atomic oxygen. 2. Temperature. Geomagn Aeronomy 37:361–364

    Google Scholar 

  • Semenov AI, Shefov NN (1997c) An empirical model of nocturnal variations in the 557.7-nm emission of atomic oxygen. 3. Emitting layer altitude. Geomagn Aeronomy 37:470–474

    Google Scholar 

  • Semenov AI, Shefov NN (1997d) Empirical model of the variations of atomic oxygen emission 557.7 nm. In: Ivchenko VN (ed) Proceedings of SPIE (23rd European Meeting on Atmospheric Studies by Optical Methods, Kiev, September 2–6, 1997), Vol 3237. The International Society for Optical Engineering, Bellingham, pp 113–122

    Google Scholar 

  • Semenov AI, Shefov NN (1999a) Empirical model of hydroxyl emission variations. Int J Geomagn Aeronomy 1:229–242

    Google Scholar 

  • Semenov AI, Shefov NN (1999b) Variations of the temperature and the atomic oxygen content in the mesopause and lower thermosphere region during change of the solar activity. Geomagn Aeronomy 39:484–487

    Google Scholar 

  • Semenov AI, Shefov NN (2005) Model of the vertical profile of the atomic oxygen concentration in the mesopause and lower ionosphere region. Geomagn Aeronomy 45:797–808

    Google Scholar 

  • Semenov AI, Shefov NN, Perminov VI, Khomich VYu, Fadel KhM (2005) Temperature response of the middle atmosphere on the solar activity for different seasons. Geomagn Aeronomy 45:236–240

    Google Scholar 

  • Shagaev MV (1977) The nightglow OH rotational temperatures with different vibrational excitation Astron Circ USSR Acad Sci 936:3–4

    Google Scholar 

  • Shalashilin DV, Umanskii SYa, Gershenzon YuM (1992) Dynamics of vibrational energy exchange in collisions of OH and OD radicals with N2. Application to the kinetics of OH-vibrational deactivation in the upper atmosphere. Chem Phys 168:315–325

    Article  Google Scholar 

  • Shalashilin DV, Umansky SYa, Gershenzon YuM, Grigor’eva VM (1993) Vibrational energy exchange dynamics during the OH and OD radical collisions with N2. Application to the vibrational kinetics of the OH quenching in the upper atmosphere. Russian J Chem Phys12:435–445

    Google Scholar 

  • Shalashilin DV, Umansky SYa, Gershenzon YuM, Grigor’eva VM, Lara-Ochoa F, Mishchenko AV (1994) Trajectory investigation of the effective VT-exchange of the vibrationally excited hydroxyl collision with the oxygen molecule. Russian J Chem Phys 13:9–21

    Google Scholar 

  • Sharov AS, Lipaeva NA (1973) Stellar component of the night airglow. Astron Rep 50:107–114

    Google Scholar 

  • Sharp WE (1986) Sources of the emission features between 2000 and 8000 Å in the thermosphere. Can J Phys 64:1594–1607

    Google Scholar 

  • Sharp WE, Siskind DE (1989) Atomic emission in the ultraviolet nightglow. Geophys Res Lett 16:1453–1456

    Article  Google Scholar 

  • Shcheglov PV (1962a) Twilight enhancement of the infrared helium line 10830 A. Astron Rep 39:158–159

    Google Scholar 

  • Shcheglov PV (1962b) Observation of the twilight helium emission λ 10830 A with Fabry-Perot interferometer. In: Krassovsky VI (ed) Aurorae and Airglow. N 9. USSR Acad Sci Publ House, Moscow, pp 59–60

    Google Scholar 

  • Shcheglov PV (1963) Electronic telescopy. Fizmatgiz, Moscow

    Google Scholar 

  • Shcheglov PV (1967) The neutral hydrogen distribution in the terrestrial atmosphere by observations of the Hα nightglow. Astron Circ USSR Acad Sci 427:5

    Google Scholar 

  • She CY, Lowe RP (1998) Seasonal temperature variations in the mesopause region at mid–latitude: comparison of lidar and hydroxyl rotational temperatures using WINDII/UARS OH height profiles. J Atmos Solar-Terr Phys 60:1573–1583

    Article  Google Scholar 

  • Shefov NN (1959) Intensities of some twilight and night airglow emissions. In: Krassovsky VI (ed) Spectral, electrophotometrical and radar researches of aurorae and airglow. N 1. USSR Acad Sci Publ House, Moscow, pp 25–29

    Google Scholar 

  • Shefov NN (1960) Intensities of some night sky emissions. In: Krassovsky VI (ed) Spectral, electrophotometrical and radar researches of aurorae and airglow. N 2–3. USSR Acad Sci Publ House, Moscow, pp 57–59

    Google Scholar 

  • Shefov NN (1961a) On the nature of helium emission λ 10830 Å in aurorae. Planet Space Sci 5:75–76

    Article  Google Scholar 

  • Shefov NN (1961b) Émission de l’helium dans la haute atmosphere. Ann Géophys 17:395–402

    Google Scholar 

  • Shefov NN (1961c) On determination of the rotational temperature of the OH bands. In: Krassovsky VI (ed) Spectral, electrophotometrical and radar researches of aurorae and airglow. N 5. USSR Acad Sci Publ House, pp 5–9

    Google Scholar 

  • Shefov NN (1961d) Continuous emission in the night airglow. In: Krassovsky VI (ed) Spectral, electrophotometrical and radar researches of aurorae and airglow. N 5. USSR Acad Sci Publ House, Moscow, pp 39–41

    Google Scholar 

  • Shefov NN (1961e) On the nature of helium emission λ 10830 Å in aurorae. In: Krassovsky VI (ed) Spectral, electrophotometrical and radar researches of aurorae and airglow. N 5. USSR Acad Sci Publ House, pp 47–48.

    Google Scholar 

  • Shefov NN (1961f) Twilight enhancement of the λ 10830 Å helium emission. Astron Circ USSR Acad Sci 222:11–12

    Google Scholar 

  • Shefov NN (1961g) On the vibrational population of OH molecules. In: Krassovsky VI (ed) Spectral, electrophotometrical and radar researches of aurorae and airglow. N 6. USSR Academic Science Publishing House, pp 21–27

    Google Scholar 

  • Shefov NN (1962a) Sur l’émission de l’helium dans la haute atmosphere. Ann Géophys 18:125

    Google Scholar 

  • Shefov NN (1962b) The helium emission in the upper atmosphere. In: Krassovsky VI (ed) Aurorae and Airglow. N 8. USSR Academic Science Publishing House, pp 50–65

    Google Scholar 

  • Shefov NN (1963a) The behaviour of the helium λ 10830 A emission in twilight. In: Krassovsky VI (ed) Aurorae and Airglow. N 10. USSR Academic Science Publishing House, pp 56–64

    Google Scholar 

  • Shefov NN (1963b) Helium in the upper atmosphere. Planet Space Sci 10:73–77

    Article  Google Scholar 

  • Shefov NN (1967) Statistical properties of the helium emission. In: Krassovsky VI (ed) Aurorae and Airglow. N 13. USSR Academic Science Publishing House, pp 64–68

    Google Scholar 

  • Shefov NN (1968) Twilight helium emission during low and high geomagnetic activity. Planet Space Sci 16:1103–1107

    Article  Google Scholar 

  • Shefov NN (1969a) Concentration of hydrogen and helium in the outer atmosphere: geocorona. Ann IQSY. The M.I.T. Press, Cambridge Mass, 5:215–228

    Google Scholar 

  • Shefov NN (1969b) Discussion of paper by Y. Kondo and J.E. Kupperian, Jr., Interaction of neutral hydrogen and charged particles in the radiation belts: the consequent Lyman-alpha emission. J Geophys Res 74:922–924

    Article  Google Scholar 

  • Shefov NN (1969c) Hydroxyl emission of the upper atmosphere. II. Effect of a sunlit atmosphere. Planet Space Sci 17:1629–1639

    Article  Google Scholar 

  • Shefov NN (1969d) Hydrogen and helium emissions in the upper atmosphere. Geomagn Aeronomy 9:1048–1052

    Google Scholar 

  • Shefov NN (1970a) Migration of the H and He inside the atmosphere and their escape. Geomagn Aeronomy 10:278–282

    Google Scholar 

  • Shefov NN (1970b) Migration of the H and He inside the atmosphere and their escape. In: Donahue TM, Smith PA, Thomas L (eds) Space Research, Vol 10. North-Holland Publishing Company, Amsterdam, pp 623–632

    Google Scholar 

  • Shefov NN (1970c) On the correlation between the intensity emission of the atmospheric system of O2 and the vibrational temperature of the OH bands. Astron Circ USSR Acad Sci 589:7–8

    Google Scholar 

  • Shefov NN (1971a) Hydroxyl emissions of the upper atmosphere. III. Diurnal variations. Planet Space Sci 19:129–136

    Article  Google Scholar 

  • Shefov NN (1971b) Hydroxyl emission of the upper atmosphere. IV Correlation with the molecular oxygen emission. Planet Space Sci 19:795–796

    Article  Google Scholar 

  • Shefov NN (1973) Hydrogen and helium emissions and concentrations in the upper atmosphere. In: Krassovsky VI (ed) Aurorae and Airglow. N 20. Nauka, Moscow, pp 40–56

    Google Scholar 

  • Shefov NN (1975a) Results of studies of the hydroxyl emission. In: Krassovsky VI (ed) Aurorae and Airglow. N 22. Nauka, Moscow, pp 71–76

    Google Scholar 

  • Shefov NN (1975b) Emissive layer altitude of the atmospheric system of molecular oxygen. In: Krassovsky VI (ed) Aurorae and Airglow. N 23. Nauka, Moscow, pp 54–58

    Google Scholar 

  • Shefov NN (1976) Seasonal variations of the hydroxyl emission. In: Krassovsky VI (ed) Aurorae and Airglow. N 24. Nauka, Moscow, pp 32–36

    Google Scholar 

  • Shefov NN (1978) Airglow. In: Total results of the Science and Technique. Geomagnetism and upper layers of the atmosphere, Vol 4. VINITI, Moscow, pp 199–230

    Google Scholar 

  • Shefov NN, Truttse YuL (1969) Hydrogen and hydroxyl emissions in the nightglow. Ann IQSY. The M.I.T. Press, Cambridge Mass 4:400–406

    Google Scholar 

  • Shefov NN, Yurchenko OT (1970) Absolute intensities of the auroral emissions in Zvenigorod. In: Krassovsky VI (ed) Aurorae and Airglow. N 18. Nauka, Moscow, pp 50–96

    Google Scholar 

  • Shefov NN, Piterskaya NA (1984) Spectral and space-time characteristics of the background luminosity of the upper atmosphere. Hydroxyl emission. In: Galperin YuI (ed) Aurorae and Airglow. N 31. VINITI, Moscow, pp 23–123

    Google Scholar 

  • Shefov NN, Semenov AI (2001) An empirical model for nighttime variations in atomic sodium emission: 2. Emitting layer height. Geomagn Aeronomy 41:257–261

    Google Scholar 

  • Shefov NN, Semenov AI (2002) The long-term trend of ozone at heights from 80 to 100 km at the mid-latitude mesopause for the nocturnal conditions. Phys Chem Earth 27:535–542

    Google Scholar 

  • Shefov NN, Semenov AI, Tikhonova VV, Yurchenko OT, Novikov NN (1998) Variations in the distribution of vibrational-level populations of hydroxyl molecules. Geomagn Aeronomy 38:823–826

    Google Scholar 

  • Shefov NN, Semenov AI, Pertsev NN (2000) Dependencies of the amplitude of the temperature enhancement maximum and atomic oxygen concentrations in the mesopause region on seasons and solar activity level. Phys Chem Earth Pt B 25:537–539

    Google Scholar 

  • Shefov NN, Semenov AI, Yurchenko OT (2002) Empirical model of the ozone vertical distribution at the nighttime mid-latitude mesopause. Geomagn Aeronomy 42:383–389

    Google Scholar 

  • Shklovsky IS (1950a) Identification of the infrared luminescence of the night sky with the rotation-vibration bands of the OH hydroxyl molecules. Dokl USSR Acad Sci 75:371–374

    Google Scholar 

  • Shklovsky IS (1950b) Quantitative analysis of the hydroxyl emission intensity of the night sky. Dokl USSR Acad Sci 75:789–792

    Google Scholar 

  • Shklovsky IS (1951a) On the nature of the infrared radiation of the night sky. Izvestiya Crimea astrophys observ. 7:34–58

    Google Scholar 

  • Shklovsky IS (1951b) The solar corona. Gostekhizdat, Moscow

    Google Scholar 

  • Shklovsky IS (1957) The intensity of the rotation-vibration bands of the OH molecule. Mém Soc Roy Sci Liège 18:420–425

    Google Scholar 

  • Shklovsky IS (1958) Elementary processes in the upper atmosphere and their manifestation in emissions. Ann Géophys 14:414–424

    Google Scholar 

  • Shklovsky IS (1959) On the hydrogen emission in the night sky. Planet Space Sci 1:63–65

    Article  Google Scholar 

  • Shouiskaya FK (1963) An attempt to detect the proper glow of atmosphere during the solar eclipse on February 15, 1961. In: Krassovsky VI (ed) Aurorae and Airglow. N 10. USSR Acad Sci Publ House, Moscow, pp 44–53

    Google Scholar 

  • Sipler DP, Biondi MA (1975) Evidence for chemiexcitation as the source of the sodium nigh glow. Geophys Res Lett 2:106–108

    Article  Google Scholar 

  • Sipler DP, Biondi MA (1978) Interferometric studies of the twilight and nightglow sodium D-line profiles. Planet Space Sci 26:65–73

    Article  Google Scholar 

  • Sivjee GG, Hamwey RM (1987) Temperature and chemistry of the polar mesopause OH. J Geophys Res. 92A:4663–4672

    Google Scholar 

  • Slanger TG, Huestis DL (1981) O2 (c1ςu - to X3ςg -) emission in the terrestrial nightglow. J Geophys Res 86A:3551–3554

    Article  Google Scholar 

  • Slanger TG, Cosby PC, Huestis DL, Osterbrock DE (2000) Vibrational level distribution of O2(b1ςg +, v = 0–15) in the mesosphere and lower thermosphere region. J Geophys Res 105D:20557–20564

    Article  Google Scholar 

  • Slipher VM (1929) Emissions in the spectrum of the light of the night sky. Publ Astron Soc Pac 41:262–263

    Google Scholar 

  • Slipher VM (1933) Spectrographic studies of the planets. Mon Not Roy Astron Soc 93:657–668

    Google Scholar 

  • Smirnov BM (1968) The atomic collisions and the elementary processes in the plasma. Atomizdat, Moscow

    Google Scholar 

  • Smith FL, Smith C (1972) Numerical evaluation of Chapman’s grazing incidence integral ch(X, χ). J Geophys Res 77:3592–3597

    Article  Google Scholar 

  • Smith IWM, Williams MD (1985) Vibrational relaxation of OH (v = 1) and OD (v = 1) by HNO3, DNO3, H2O, NO and NO2. J Chem Soc Faraday Trans 2 81:1849–1860

    Article  Google Scholar 

  • Smith DR, Blumberg WAM, Nadile RM, Lipson SJ, Huppi ER, Wheeler NB (1992) Observation of high-N hydroxyl pure rotation lines in atmospheric emission spectra by the CIRRIS 1A Space Shuttle experiment. Geophys Res Lett 19:593–596

    Article  Google Scholar 

  • Sobolev VG (1978a) Continuum in night airglow between 8000 and 11000 Å. Planet Space Sci 26:703–704

    Article  Google Scholar 

  • Sobolev VG (1978b) Continuum of the near infrared range of nightglow spectrum. In: Krassovsky VI (ed) Aurorae and Airglow. N 27. Soviet Radio, Moscow, pp 30–35

    Google Scholar 

  • Sobolev VG (1979) Correlation between nightglow continuum and ionospheric absorption. Astron Circ USSR Acad Sci 1083:7–8

    Google Scholar 

  • Sommer LA (1932) Über den langwelligen Teil des sichtbaren Spektrums des Nachthimmellichtes. Zeits Phys 77:374–390

    Article  Google Scholar 

  • Sparrow JG, Ney EP, Burnett GB, Stoddart JW (1968) Airglow observations from OSO-B2 satellite. J Geophys Res 73:857–866

    Article  Google Scholar 

  • Spencer JE, Glass GP (1977a) The production and subsequent relaxation of vibrationally excited OH in the reaction of atomic oxygen with HBr. Int J Chem Kin 9:97–109

    Article  Google Scholar 

  • Spencer JE, Glass GP (1977b) Some reactions of OH(v = 1). Int J Chem Kin 9:111–122

    Article  Google Scholar 

  • Sridharan UC, Klein FS, Kaufman F (1985) Detailed course of the O + HO2 reaction. J Chem Phys 82:592–593

    Article  Google Scholar 

  • Stair AT, Sharma RD, Nadile RM, Baker DJ, Grieder WF (1985) Observations of limb radiance with cryogenic spectral infrared rocket experiment. J Geophys Res 90A:9763–9775

    Article  Google Scholar 

  • States RJ, Gardner CS (1999) Structure of the mesospheric Na layer at 40ˆN latitude: seasonal and diurnal variations. J Geophys Res 104D:11783–11898

    Article  Google Scholar 

  • States RJ, Gardner CS (2000a) Thermal structure of the mesopause region (80–105 km) at 40ˆN latitude. Part I: seasonal variations. J Atmos Sci 57:66–77

    Article  Google Scholar 

  • States RJ, Gardner CS (2000b) Thermal structure of the mesopause region (80–105 km) at 40ˆN latitude. Part II: diurnal variations. J Atmos Sci 57:78–92

    Article  Google Scholar 

  • Stebbins J, Whitford AE, Swings P (1945) A strong infra-red radiation from molecular nitrogen in the night sky. Astrophys J 101:39–46

    Article  Google Scholar 

  • Stebbings RF, Dunning FB, Tittel FK, Rundel RD (1973) Photoionization of helium metastable atoms near threshold. Phys Rev Lett 30:815–817

    Article  Google Scholar 

  • Stegman J (1991) Spectroscopic and kinetic studies of atmospheric oxygen emissions. Stockholm University, Stockholm

    Google Scholar 

  • Sternberg JR, Ingham MT (1972) Observations of the airglow continuum. Mon Not Astron Roy Soc 159:1–20

    Google Scholar 

  • Stoffregen W (1969) Transient emissions on the wavelength of helium I, 5876 Å recorded during auroral break–up. Planet Space Sci 17:1927–1935

    Article  Google Scholar 

  • Stolarski RS, Dulock VA, Watson CE, Green AES (1967) Electron impact cross sections for atmospheric species. 2. Molecular nitrogen. J Geophys Res 72:3953–3960

    Google Scholar 

  • Stolarski RS, Johnson NP (1972) Photoionization and photoabsorption cross sections for ionospheric calculations. J Atmos Terr Phys 34:1691–1701

    Article  Google Scholar 

  • Straižys V (1977) Multicolor stellar photometry. Mokslas, Vilnius

    Google Scholar 

  • Streit GE, Johnston HS (1976) Reaction and quenching of vibrationally excited hydroxyl radicals. J Chem Phys 64:95–103

    Article  Google Scholar 

  • Strekalov ML (2003) The rotational relaxation of the diatomic molecules. A model of the angle moment transfer. Russian J Chem Phys 22:3–9

    Google Scholar 

  • Striganov AR, Odintsova GA (1982) Tables of the spectral lines of the atoms and ions. Handbook. Energoizdat, Moscow

    Google Scholar 

  • Stupochenko EV, Losev SA, Osipov AI (1965) The relaxation processes in the shock waves. Nauka, Moscow

    Google Scholar 

  • Sukhoivanenko PYa, Fedorova NI (1976) Fast registration of the λ 10830 Å helium emission. In: Shefov NN, Savrukhin AP (eds) Studies of the upper atmospheric emission. Ylym, Ashkhabad, pp 12–16

    Google Scholar 

  • Suzuki K (1983) Observation of helium 10830 Å airglow emission in midlatitude. J Geomagn Geoelectr 35:321–330

    Google Scholar 

  • Suzuki K, Tohmatsu T (1976) An interpretation of the rotational temperature of the airglow hydroxyl emissions. Planet Space Sci 24:665–671

    Article  Google Scholar 

  • Swenson GR, Mende SB, Llewellyn EJ (1989) Imaging observations of lower thermospheric O(1S) and O2 airglow emissions from STS 9: implications of height variations. J Geophys Res 94A:1417–1429

    Article  Google Scholar 

  • Swider W (1970) Ionic reactions for meteoric elements. Ann Géophys 26:595–599

    Google Scholar 

  • Takahashi H, Batista pp (1981) Simultaneous measurements of OH(9,4), (8,3), (7,2), (6,2) and (5,1) bands in the airglow. J Geophys Res 86A:5632–5642

    Article  Google Scholar 

  • Taranova OG (1962) Continuum emission in airglow and aurorae. In: Krassovsky VI (ed) Aurorae and Airglow. N 8. USSR Academic Science Publishing House, Moscow, pp 21–23

    Google Scholar 

  • Taranova OG (1967) On diurnal variations of helium emission. In: Krassovsky VI (ed) Aurorae and Airglow. N 13. USSR Academic Science Publishing House, Moscow, pp 50–52

    Google Scholar 

  • Tarasova TM (1962) Direct measurements of the night sky in the λ 8640 A spectral region. In: Artificial satellites of the Earth. N 13. USSR Academic Science Publishing House, Moscow, pp 107–109

    Google Scholar 

  • Tarasova TM, Slepova VA (1964) Height distribution of radiation intensity of the night sky main emission lines Geomagn Aeronomy 4:321–327

    Google Scholar 

  • Teixeira NR, Angreji PD, Sahai Y, Tinsley BA, Christensen AB (1976) Tropical twilight HeI 10830 emission. Planet Space Sci 24:303–312

    Article  Google Scholar 

  • Telegin GG, Yatsenko AS (2000) The optical spectra of the atmospheric gases. Rautian SG (ed) Nauka, Novosibirsk

    Google Scholar 

  • Tepley CA, Meriwether JW, Walker JCG, Mathews JD (1981) Observations of neutral iron emission in twilight spectra. J Geophys Res 86:4831–4835

    Article  Google Scholar 

  • Timothy JG (1977) Solar spectrum between 300 and 1200 A. In: White OR (ed) The solar output and its variation. University Press, Boulder, pp 257–285

    Google Scholar 

  • Tinsley BA (1968a) Measurements of twilight helium 10830 Å emission. Planet Space Sci 16:91–99

    Article  Google Scholar 

  • Tinsley BA (1968b) Temporal variations in geocoronal Balmer Alpha. J Geophys Res 73:4139–4149

    Article  Google Scholar 

  • Tinsley BA (1969) Reinterpretation of geocoronal observations with increased high/low altitude hydrogen ratio. Planet Space Sci 17:769–771

    Article  Google Scholar 

  • Tinsley BA, Meier RR (1971) Balmer Alpha distribution over a solar cycle: comparison of observations with theory. J Geophys Res 76:1006–1016

    Article  Google Scholar 

  • Tinsley BA, Christensen AB (1976) Twilight helium 10, 830 Å calculations and observations. J Geophys Res 81:1253–1263

    Google Scholar 

  • Toroshelidze TI (1970) Twilight emission of the helium by the observations of Abastumani. Geomagn Aeronomy 10:1037–1042

    Google Scholar 

  • Toroshelidze TI (1971) The emission of atmospheric helium 10830 A at the predawn period. Astron Circ USSR Acad Sci 652:1–3

    Google Scholar 

  • Toroshelidze TI (1976) On the certain particularities of the 10830 A helium emission in twilight. In: Shefov NN, Savrukhin AP (eds) Studies of the upper atmospheric emission. Ylym, Ashkhabad, pp 22–32

    Google Scholar 

  • Toroshelidze TI (1991) The analysis of the aeronomy problems on the upper atmosphere glow. Shefov NN (ed) Metsniereba, Tbilisi

    Google Scholar 

  • Toroshelidze TI, Chilingarashvili SP (1975) Study of the sodium layer variations according to twilight observations of D emission. In: Kharadze EK (ed) Bull Abastumani astrophys observ. N 46, pp 235–250

    Google Scholar 

  • Torr MR, Torr DG (1982) The role of the metastable species in the thermosphere. Rev Geophys Space Phys 20:91–144

    Article  Google Scholar 

  • Torr MR, Torr DG, Laher RR (1985) The O2 Atmospheric 0–0 band and related emissions at night from Spacelab 1. J Geophys Res 90A:8525–8538

    Article  Google Scholar 

  • Truttse YuL (1968a) Upper atmosphere during geomagnetic disturbances. I. Some regular features of low-latitude auroral emissions. Planet Space Sci 16:981–992

    Article  Google Scholar 

  • Truttse YuL (1968b) Upper atmosphere during geomagnetic disturbances. II. Geomagnetic storms oxygen emission at 6300 Å and heating of the upper atmosphere. Planet Space Sci 16:1201–1208

    Article  Google Scholar 

  • Truttse YuL (1969) Upper atmosphere during geomagnetic disturbances. III. Some regularities in density variations. Planet Space Sci 17:181–187

    Article  Google Scholar 

  • Truttse YuL (1972a) Oxygen emission at 6300 Å. Ann Géophys 28:169–177

    Google Scholar 

  • Truttse YuL (1972b) Night variations of intensity of emission 6300 A in quiet geomagnetic conditions. Geomagn Aeronomy 12:561–564

    Google Scholar 

  • Truttse YuL (1973) Upper atmosphere during geomagnetic disturbances. In: Krassovsky VI (ed) Aurorae and Airglow. N 20. Nauka, Moscow, pp 5–22

    Google Scholar 

  • Truttse YuL, Gogoshev MM (1977) Red oxygen line 6300 Å and electron content in night F-region. Dokl Bulg Acad Sci 30:45–48

    Google Scholar 

  • Turnbull DN (1987) An empirical determination of the electric dipole moment function and transition probabilities of OH(X2ϖ). University of West Ontario, London

    Google Scholar 

  • Turnbull DN, Lowe RP (1983) Vibrational population distribution in the hydroxyl night airglow. Can J Phys 61:244–250

    Google Scholar 

  • Turnbull DN, Lowe RP (1989) New hydroxyl transition probabilities and their importance in airglow studies. Planet Space Sci 37:723–738

    Article  Google Scholar 

  • Ulwick JC, Baker KD, Stair AT, Frings W, Hennig R, Grossmann KU, Hegblom ER (1985) Rocket-borne measurements of atmospheric fluxes. J Atmos Terr Phys 47:123–131

    Article  Google Scholar 

  • Unsöld A (1938) Physik der Sternatmosphären mit besonderer Derücksichtigung der Sonne. Springer-Verlag, Berlin

    Google Scholar 

  • Vainstein LA, Sobelman II, Yukov EA (1979) An atom excitation and the spectral line broadening. Nauka, Moscow

    Google Scholar 

  • Vallance Jones A (1958) Calcium and oxygen in the twilight airglow. Ann Géophys 14:179–185

    Google Scholar 

  • Vallance Jones A (1973) The infrared spectrum of the airglow. Space Sci Rev 15:355–400

    Article  Google Scholar 

  • Vallance Jones A (1974) Aurora. D Reidel Publishing Company, Dordrecht

    Google Scholar 

  • Vallance Jones A, Gattinger RL (1974) The O2 (b1ςg + to X3ςg -) system in aurora. J Geophys Res 79:4821–4822

    Article  Google Scholar 

  • Velculescu VG (1970) On the production of excited hydroxyl radicals in the H + O3 – atomic flame. Zeits Phys 237:69–74

    Article  Google Scholar 

  • Virin LI,Dzhagatspanyan RV, Karachevtsev GV, Potapov VK, Talrose VL (1979) Ion-molecular reactions in gases. Nauka, Moscow

    Google Scholar 

  • Vlasov MN, Klopovsky KS, Lopaev DV, Popov NA, Rakhimov AT, Rakhimova TB (1997) The mechanism of singlet oxygen emission in the upper atmosphere. Cosmic Res 35:235–242

    Google Scholar 

  • von Rosenberg CW, Trainor DW (1973) Observations of vibrationally excited O3 formed by recombination. J Chem Phys 59:2142

    Article  Google Scholar 

  • von Zahn U, von der Gathen P, Hansen G (1987) Forced release of sodium upper atmospheric dust particles. Geophys Res Lett 14:76–79

    Article  Google Scholar 

  • Vriens L, Bonsen TFM, Smith JA (1968) Excitation to the metastable states and ionization from ground and metastable states in helium. Physica 40:229–252

    Article  Google Scholar 

  • Wallace L, Hunten DM (1968) Dayglow of the oxygen A band. J Geophys Res 73:4813–4834

    Article  Google Scholar 

  • Watanabe K, Inn ECY, Zelikoff M (1953) Absorption coefficient of oxygen in the vacuum ultraviolet. J Chem Phys 21:1026–1030

    Article  Google Scholar 

  • Watson CE, Dulock VA, Stolarski RS, Green AES (1967) Electron impact cross sections for atmospheric species. 3. Molecular oxygen. J Geophys Res 72:3961–3966

    Google Scholar 

  • Weller CS, Meier RR, Tinsley BA (1971) Simultaneous measurements of the hydrogen airglow emissions of Lyman alpha, Lyman beta and Balmer alpha. J Geophys Res 76:7734–7744

    Article  Google Scholar 

  • Werner HJ, Rosmus P, Reinsch EA (1983) Molecular properties from MCSCF-SCEP wave function. I. Accurate dipole moment functions of OH, OH- and OH+. J Chem Phys 79:905–916

    Article  Google Scholar 

  • Whiting EE, Paterson JA, Kovács I, Nicholls R (1973) Computer checking of rotational line intensity factors for diatomic transitions. J Mol Spectrosc 47:84–98

    Article  Google Scholar 

  • Whitten RC, Poppoff IG (1971) Fundamentals of aeronomy. John Wiley and Sons, New York

    Google Scholar 

  • Wiese WL, Smith MW, Glennon BM (1966) Atomic transition probabilities H through Ne, Vol 1. NSRDS-NBS 4, Washington

    Google Scholar 

  • Witt G, Stegman J, Solheim BH, Llewellyn EJ (1979) A measurement of the O2 (b1ςg + to X3ςg -) atmospheric band and the O(1S) green line in the nightglow. Planet Space Sci 27:341–350

    Article  Google Scholar 

  • Witt G, Rose J, Llewellyn EJ (1981) The airglow continuum at high latitudes – an estimate of the NO concentration. J Geophys Res 86A:623–628

    Google Scholar 

  • Woodworth JR, Moos HW (1975) Experimental determination of the single-photon transition rate between the 23S1 and 11S1 states of He. Phys Rev A 12:2455–2463

    Article  Google Scholar 

  • Worley SD, Coltharp RN, Potter AE (1971) Quenching of vibrationally excited hydroxyl (v = 9) with oxygen. J Chem Phys 55:2608–2609

    Article  Google Scholar 

  • Worley SD, Coltharp RN, Potter AE (1972) Rates of interaction of vibrationally excited hydroxyl (v = 9) with diatomic and small polyatomic molecules. J Chem Phys 56:1511–1514

    Article  Google Scholar 

  • Wraight PC (1975) Is there a continuum near infra-red dayglow? J Atmos Terr Phys 37:731–737

    Google Scholar 

  • Wraight PC (1977) The near infrared nightglow continuum. Planet Space Sci 25:787–794

    Article  Google Scholar 

  • Wraight PC (1982) Association of atomic oxygen and airglow excitation mechanism. Planet Space Sci 30:251–259

    Article  Google Scholar 

  • Wraight PC (1986) Theory of the nightglow continuum. Planet Space Sci 34:1373

    Article  Google Scholar 

  • Yarin VI (1961a) The OH emission according to observations in Yakutsk. In: Krassovsky VI (ed) Spectral, electrophotometrical and radar researches of aurorae and airglow. N 5. USSR Academic Science Publishing House, Moscow, pp 10–17

    Google Scholar 

  • Yarin VI (1961b) Continuous emission and the Herzberg O2 bands in the night airglow. In: Krassovsky VI (ed) Spectral, electrophotometrical and radar researches of aurorae and airglow. N 5. USSR Academic Science Publishing House, Moscow, pp 35–38

    Google Scholar 

  • Yarin VI (1962a) On the dependence of intensity of OH bands on the rotational temperature. In: Krassovsky VI (ed) Aurorae and Airglow. N 8. USSR Academic Science Publishing House, Moscow, pp 9–10

    Google Scholar 

  • Yarin VI (1962b) Variations of the vibrational population rates of OH molecules. In: Krassovsky VI (ed) Aurorae and Airglow. N 9. USSR Academic Science Publishing House, Moscow,pp 10–18

    Google Scholar 

  • Yevlashin LS (1962) Prominent aurora of February 11, 1958. Geomagn Aeronomy 2:74–78

    Google Scholar 

  • Zipf EC, Borst WL, Donahue TM (1970) A mass spectrometer observation of NO in auroral arc. J Geophys Res 75:6371–6376

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Khomich, V.Y., Semenov, A.I., Shefov, N.N. (2008). Processes Responsible for the Occurrence of the Airglow. In: Airglow as an Indicator of Upper Atmospheric Structure and Dynamics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75833-4_2

Download citation

Publish with us

Policies and ethics