Skip to main content

Computational Modelling of the Biomechanics of Epithelial and Mesenchymal Cell Interactions During Morphological Development

  • Chapter
Computational Intelligence in Medical Informatics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 85))

  • 633 Accesses

Computational modelling of morphological development of tissues based on complex systems and cellular automata can be decomposed into three interdependenent processes. Those three crucial parts are mechanical response of tissues, diffusion of signalling molecules, and gene regulatory network. It is shown that development of an adequate mechanical model of living tissues provides the morphological model with sufficient flexibility necessary to achieve expected morphological development scenarios. In this contribution, the attention is focussed to development of mesenchymal and epithelial tissues which, e.g., creates the basic mechanism of tooth development. The future development of the model is discussed with emphasis on open questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell. (4th ed.) Garland Science (Taylor & Francis Group), New York

    Google Scholar 

  2. Kroc J (2002) LNCS 2329:773–782

    Google Scholar 

  3. Toffoli T, Margolus N (1987) Cellular Automata Theory. MIT Press, Cambridge

    Google Scholar 

  4. Ilachinski (2001) A Cellular Automata: A Discrete Universe. World Scientific Publishing Co. Pte. Ltd., New Jersey London Singapore, Hong Kong

    Google Scholar 

  5. Resnick M (2006) StarLogo - programmable environment for exploring decentralized systems flocks, traffic jams, termite and ant colonies. Technical report, MIT, http://education.mit.edu/starlogo

  6. Toffoli T (1984) Physica 10D:117–127

    MathSciNet  Google Scholar 

  7. Vichniac GY (1984) Physica 10D:96–116

    MathSciNet  Google Scholar 

  8. Wolfram S (2002) A New Kind of Science. Wolfram Media Inc., Champaign

    MATH  Google Scholar 

  9. Ingber DE (1998) Scientific American 278:48–57

    Article  Google Scholar 

  10. Ingber DE, Heidemann SR, Lamoreux P, Buxbaum RE (2000) J. Appl. Physiol. 89:1663–1670

    Google Scholar 

  11. Lamoreux P, Heidemann SR, Buxbaum RE (2000) J. Appl. Physiol. 89:1670–1674

    Google Scholar 

  12. Ingber DE (2000) J. Appl. Physiol. 89:1674–1677

    Google Scholar 

  13. Ingber DE, Heidemann SR, Lamoreux P, Buxbaum RE (2000) J. Appl. Physiol. 89:1677–1678

    Google Scholar 

  14. Hajela P, Kim B (2001) Struct. Multidisc. Optim. 23:24–33

    Article  Google Scholar 

  15. Gurdal Z, Tatting B (2000) Cellular automata for design of truss structures with linear and nonlinear response. In: 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, American Institute for Aeronautics and Astronautics, Long Beach, CA

    Google Scholar 

  16. Kita E, Toyoda T (2000) Struct. Multidisc. Optim. 19:64–73

    Article  Google Scholar 

  17. Slazar-Ciudad I, Jernvall J, Newman SA (2003) Development 120: 2027–2037

    Article  Google Scholar 

  18. Chaturvedi R, Huang C, Kazmierczak B, Schneider T, Izaguirre JA, Glimm T, Hentschel HGE, Glazier JA, Newman SA, Alber MS (2005) J.R. Soc. Interface 2: 237–253

    Article  Google Scholar 

  19. Glazier JA, Graner F (1993) Phys. Rev. E 47:2128–2154

    Article  Google Scholar 

  20. Zeng W, Thomas GL, Newman SA, Glazier JA (2003) A novel mechanism for mesenchymal condensation during limb chondrogenesis in vitro. In: Mathematical modelling and computating in biology and medicine. Fifth Conference of the European Society of Mathematical and Theoretical Biology

    Google Scholar 

  21. Thesleff I (2003) Journal of Cell Science 116:1647–1648

    Article  Google Scholar 

  22. Jernvall J, Thesleff I (2000) Mech. Dev. 92:19–29

    Article  Google Scholar 

  23. Salazar-Ciudad I, Jernawall I (2002) Proc. Nat. Acad. Sci. USA 99:8116–8120

    Article  Google Scholar 

  24. Thesleff I, Mikkola M (2002) Int. Rev. Cytol. 217: 93–135

    Article  Google Scholar 

  25. Buttler PM (1956) Biol. Rev. 31: 30–70

    Article  Google Scholar 

  26. Jernvall J, Aberg T, Kettunen P, Keranen S, Thesleff I (1998) Development 125: 161–169

    Google Scholar 

  27. Jernvall J, Kettunen P, Karavanova I, Martin LB, Thesleff I (1994) Int. J. Dev. Biol. 38:463–469

    Google Scholar 

  28. Kettunen P, Laurikkala J, Itaranta P, Vainio S, Itoh N, Thesleff I (2000) Dev. Dyn. 219:322–332

    Article  Google Scholar 

  29. Pilot F, Lecuit T (2005) Compartmentalized morphogenesis in epithelia: From cell to tissue shape. Developmental Dynamics 232:685–694

    Article  Google Scholar 

  30. Hay ED (2005) The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Developmental Dynamics 233:706–720

    Article  Google Scholar 

  31. Ball EMA, Risbridger GP (2001) Activins as regulators of branching morphogenesis. Developmental Biology 238:1–12

    Article  Google Scholar 

  32. Heidemann SR, Wirtz D (2004) Towards a regional approach to cell mechanics. TRENDS in Cell Biology 14:160–166

    Article  Google Scholar 

  33. Kroc J (2006) Model of mechanical interaction of mesenchyme and epithelium in living tissues. Lecture Notes in Computer Science 3994:847–854

    Article  Google Scholar 

  34. Kroc J (2007) Modelling of morphological development of tooth using simple regulatory network: Mechanical model of mesenchyme. Mathematics and Computers in Simulation, in print

    Google Scholar 

  35. Kroc J (2004) Diffusion Controlled Cellular Automaton Performing Mesh Partitioning. Lecture Notes in Computer Science 3305:131–140

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kroc, J. (2008). Computational Modelling of the Biomechanics of Epithelial and Mesenchymal Cell Interactions During Morphological Development. In: Kelemen, A., Abraham, A., Liang, Y. (eds) Computational Intelligence in Medical Informatics. Studies in Computational Intelligence, vol 85. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75767-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75767-2_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75766-5

  • Online ISBN: 978-3-540-75767-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics