A Computational Framework for Topological Operations

  • Michael Spevak
  • René Heinzl
  • Philipp Schwaha
  • Siegfried Selberherr
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4699)


We present a complete topological framework that is able to provide incidence traversal operations for various topological elements. This enables one to perform the necessary topological operations for several discretization schemes. A combination of incidence information combined with an archetype concept enables one to optimize traversal operations of inter-dimensional objects without explicitly storing them. Access to topological structures is provided using a generalized iterator concept.


Cell Complex Discretization Scheme Hasse Diagram Incidence Relation Topological Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Selberherr, S., Schütz, A., Pötzl, H.: MINIMOS—A Two-Dimensional MOS Transistor Analyzer. IEEE Trans. Electron Dev. ED-27(8), 1540–1550 (1980)Google Scholar
  2. 2.
    Halama, S., Pichler, C., Rieger, G., Schrom, G., Simlinger, T., Selberherr, S.: VISTA — User Interface, Task Level, and Tool Integration. IEEE J. Techn. Comp. Aided Design 14(10), 1208–1222 (1995)CrossRefGoogle Scholar
  3. 3.
    Sabelka, R., Selberherr, S.: A Finite Element Simulator for Three-Dimensional Analysis of Interconnect Structures. Microelectronics Journal 32(2), 163–171 (2001)CrossRefGoogle Scholar
  4. 4.
    IμE: MINIMOS-NT 2.1 User’s Guide. Institut für Mikroelektronik, Technische Universität Wien, Austria (2004),
  5. 5.
    Binder, T., Hössinger, A., Selberherr, S.: Rigorous Integration of Semiconductor Process and Device Simulators. IEEE Trans. Comp.-Aided Design of Int. Circ. and Systems 22(9), 1204–1214 (2003)CrossRefGoogle Scholar
  6. 6.
    Berti, G.: GrAL - The Grid Algorithms Library. In: Sloot, P.M.A., Tan, C.J.K., Dongarra, J.J., Hoekstra, A.G. (eds.) Computational Science - ICCS 2002. LNCS, vol. 2331, pp. 745–754. Springer, Heidelberg (2002)Google Scholar
  7. 7.
    Abrahams, D., Siek, J., Witt, T.: New Iterator Concepts. Technical Report N1477 03-0060, ISO/IEC JTC 1, Information Technology, Subcommittee SC 22, Programming Language C++ (2003)Google Scholar
  8. 8.
    Bangerth, W., Hartmann, R., Kanschat, G.: deal.II – A General Purpose Object Oriented Finite Element Library. Technical Report ISC-06-02-MATH, Institute for Scientific Computation, Texas A&M University (2006)Google Scholar
  9. 9.
    Rafferty, C.S., Smith, R.K.: Solving Partial Differential Equations with the Prophet Simulator (1996)Google Scholar
  10. 10.
    Austern, M.H.: Generic Programming and the STL: Using and Extending the C++ Standard Template Library. Addison-Wesley Longman Publishing Co., Inc, Boston (1998)Google Scholar
  11. 11.
    Heinzl, R., Spevak, M., Schwaha, P., Grasser, T.: Concepts for High Performance Generic Scientific Computing. In: Proc. of the 5th MATHMOD, vol. 1, Vienna, Austria (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Michael Spevak
    • 1
  • René Heinzl
    • 1
  • Philipp Schwaha
    • 1
  • Siegfried Selberherr
    • 1
  1. 1.Institute for Microelectronics, TU Wien, Gusshausstrasse 27-29, 1040 WienAustria

Personalised recommendations