Skip to main content

Vacuum Problem of One-Dimensional Compressible Navier–Stokes Equations

  • Conference paper
Hyperbolic Problems: Theory, Numerics, Applications

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bresch, D.; Desjardins, B. Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys. 238 (2003), 211–223.

    MATH  MathSciNet  Google Scholar 

  2. Bresch, D.; Desjardins, B. On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids. preprint 2005

    Google Scholar 

  3. Danchin, R. Global existence in critical spaces for compressible Navier-Stokes equations. Invent. Math. 141 (2000), 579–614.

    Article  MATH  MathSciNet  Google Scholar 

  4. Fang, D.; Zhang, T. Compressible Navier-Stokes equations with vacuum state in one dimension. Comm. Pure Appl. Anal. 3 (2004), 675–694.

    Article  MATH  MathSciNet  Google Scholar 

  5. Feireisl, E.; Novotny, A.; Petzeltová, H. On the existence of globally defined weak solutions to the Navier-Stokes equations. J. Math. Fluid Mech. 3 (2001), no. 4, 358–392.

    Article  MATH  MathSciNet  Google Scholar 

  6. Gerbeau, J.-F.; Perthame, B. Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation. Discrete Contin. Dyn. Syst. Ser. B1, (2001), 89–102.

    Google Scholar 

  7. Hoff, D. Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data. Arch. Rational Mech. Anal. 132 (1995), 1–14.

    Article  MATH  MathSciNet  Google Scholar 

  8. Hoff, D.; Serre, D. The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow. SIAM J. Appl. Math. 51 (1991), no. 4, 887–898.

    Article  MATH  MathSciNet  Google Scholar 

  9. Hoff, D.; Smoller, J., Non-formation of vacuum states for compressible Navier-Stokes equations. Comm. Math. Phys. 216 (2001), no. 2, 255–276.

    Article  MATH  MathSciNet  Google Scholar 

  10. Jiang, S.; Xin, Z.; Zhang, P. Golobal weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity, Methods and Applications of Analysis, to appear 2005.

    Google Scholar 

  11. Li H.-L.; Li J.; Xin Z. Vanishing of Vacuum States and Blow-up Phenomena of the Compressible Navier-Stokes Equations, preprint 2006.

    Google Scholar 

  12. Li, J. Qualitative behavior of solutions to the compressible Navier-Stokes equations and its variants. PhD Thesis, Chinese University of Hong Kong, 2004.

    Google Scholar 

  13. Li, J.; Xin Z. Some uniform estimates and blowup behavior of global strong solutions to the Stokes approximation equations for two-dimensional compressible flows. J. Differential Equations 221 (2006), 275–308.

    Article  MATH  MathSciNet  Google Scholar 

  14. Lions, P.-L., Mathematical topics in fluid mechanics. Vol. 2. Compressible models. Oxford University Press, New York, 1998.

    MATH  Google Scholar 

  15. Liu, T.-P.; Xin, Z.; Yang, T. Vacuum states for compressible flow. Discrete Contin. Dynam. Systems 4 (1998), 1–32.

    MATH  MathSciNet  Google Scholar 

  16. Luo, T.; Xin, Z.; Yang, T. Interface behavior of compressible Navier-Stokes equations with vacuum. SIAM J. Math. Anal. 31 (2000), 1175–1191.

    Article  MATH  MathSciNet  Google Scholar 

  17. Matsumura, A.; Nishida, T. The initial boundary value problems for the equations of motion of compressible and heat-conductive fluids. Comm. Math. Phys. 89 (1983), 445–464.

    Article  MATH  MathSciNet  Google Scholar 

  18. Mellet, A.; Vasseur, A. On the isentropic compressible Navier-Stokes equations, preprint 2005.

    Google Scholar 

  19. Okada, M. Free boundary problem for the equation of one-dimensional motion of viscous gas. Japan J. Appl. Math. 6 (1989), 161–177.

    Article  MATH  MathSciNet  Google Scholar 

  20. Okada, M.; Makino, T. Free boundary problem for the equation of spherically symmetric motion of viscous gas Japan J. Appl. Math. 10 (1993), 219–235.

    Article  MATH  MathSciNet  Google Scholar 

  21. Okada, M.; Matsusu-Necasova, S.; Makino, T. Free boundary problem for the equation of one-dimensional motion of compressible gas with density-dependent viscosity. Ann. Univ. Ferrara Sez. VII (N.S.) 48 (2002), pp. 1–20.

    MATH  MathSciNet  Google Scholar 

  22. Straškraba, I; Zlotnik, A. Global properties of solutions to 1D-viscous compressible barotropic fluid equations with density dependent viscosity. Z. Angew. Math. Phys. 54 (2003), no. 4, 593–607.

    Article  MATH  MathSciNet  Google Scholar 

  23. Salvi, R.; Straškraba I. Global existence for viscous compressible fluids and their behavior as t →∞. J. Fac. Sci. Univ. Tokyo Sect. IA, Math., 40 (1993), 17–51.

    MATH  MathSciNet  Google Scholar 

  24. Serre, D. On the one-dimensional equation of a viscous, compressible, heat-conducting fluid. C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 14, 703–706.

    MATH  MathSciNet  Google Scholar 

  25. Vong, S.-W.; Yang, T.; Zhu, C. Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum. II. J. Differential Equations 192 (2003), no. 2, 475–501.

    Article  MATH  MathSciNet  Google Scholar 

  26. Xin, Z. Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density. Comm. Pure Appl. Math. 51 (1998), pp. 229–240.

    Article  MATH  MathSciNet  Google Scholar 

  27. Xin, Z. On the behavior of solutions to the compressible Navier-Stokes equations. 159–170, AMS/IP Stud. Adv. Math. 20, AMS, Providence, RI, 2001.

    Google Scholar 

  28. Xin, Z.; Yuan, H. Vacuum state for spherically symmetric solutions of the compressible Navier-Stokes equations, submitted 2005.

    Google Scholar 

  29. Yang T.; Yao Z.; Zhu, C. Compressible Navier-Stokes equations with density-dependent viscosity and vacuum. Comm. Partial Differential Equations 26 (2001), no. 5–6, 965–981.

    Article  MATH  MathSciNet  Google Scholar 

  30. Yang, T.; Zhao, H. A vacuum problem for the one-dimensional compressible Navier-Stokes equations with density-dependent viscosity. J. Differential Equations 184 (2002), pp. 163–184.

    Article  MATH  MathSciNet  Google Scholar 

  31. Yang, T.; Zhu, C. Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum. Comm. Math. Phys. 230 (2002), pp. 329–363.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, H.L., Li, J., Xin, Z. (2008). Vacuum Problem of One-Dimensional Compressible Navier–Stokes Equations. In: Benzoni-Gavage, S., Serre, D. (eds) Hyperbolic Problems: Theory, Numerics, Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75712-2_13

Download citation

Publish with us

Policies and ethics