Towards Mood Based Mobile Services and Applications

  • A. Gluhak
  • M. Presser
  • L. Zhu
  • S. Esfandiyari
  • S. Kupschick
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4793)


The introduction of mood as context of a mobile user opens up many opportunities for the design of novel context-aware services and applications. This paper presents the first prototype of a mobile system platform that is able to derive the mood of a person and make it available as a contextual building block to mobile services and application. The mood is derived based on physiological signals captured by a body sensor network. As a proof-of-concept application a simple mood based messaging service has been developed on top of the platform.


Wireless body senor networks context-awareness data fusion mobile services mood based services 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    IST FP6 project e-SENSE,
  2. 2.
    Dey, A.K., Abowd, G.D.: Towards a better understanding of context and context-awareness. In: Proceedings of the Workshop on the What, Who, Where, When and How of Context-Awareness, CHI 2000 Conference on Human Factors in Computer Systems, ACM Press, New York (2000)Google Scholar
  3. 3.
  4. 4.
    IST FP6 project MOBILIFE,
  5. 5.
    Koolwaaij, J., Tarlano, A., Luther, M., Nurmi, P., Mrohs, B., Battestini, A., Vaidya, R.: Context Watcher - Sharing Context Information in Everyday Life, Web Technologies, Applications, and Services, WTAS 2006, Calgary, Canada (2006)Google Scholar
  6. 6.
    Cohen, I., Sebe, N., Garg, A., Lew, M.S., Huang, T.S.: Facial expression Recognition from Video Sequences. Computer Vision and Image Understanding 91(1-2), 160–187 (2003)CrossRefGoogle Scholar
  7. 7.
    Coulson, M.: Attributing Emotion to Static Body Postures: Recognition Accuracy, Confusions, and Viewpoint Dependence. In: Journal of Nonverbal Behavior, vol. 28(2), pp. 117–139(23). Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Ekman, P., Friesen, W.: Facial Action Coding System. Consulting Physiologists Press, Palo Alto (1977)Google Scholar
  9. 9.
    Scheirer, J., Fernandez, R., Picard, R.W.: Expression glasses: a wearable device for facial expression recognition. In: Conference on Human Factors in Computing Systems, Pittsburgh, Pennsylvania, pp. 262–263 (1999) ISBN:1-58113-158-5Google Scholar
  10. 10.
    Branco, P., Encarnação, L.M.: Affective computing for behavior-based UI adaptation. In: Proceedings of the Workshop on Behavior-based User Interface Customization, IUI 2004, Madeira, Portugal (January 13-16, 2004)Google Scholar
  11. 11.
    Jones, C.M., Jonsson, I.-M.: Automatic recognition of affective cues in the speech of car drivers to allow appropriate responses. In: Proceedings of the 19th conference of the computer-human interaction special interest group (CHISIG), Canberra, Australia (2005) ISBN:1-59593-222-4Google Scholar
  12. 12.
    Scherer, K.R., Ceschi, G.: Lost luggage emotion: A field study of emotion-antecedent appraisal. Motivation and Emotion 21, 211–235 (1997)CrossRefGoogle Scholar
  13. 13.
    Frijda, N.: The emotions, Studies in Emotion and Social Interaction. Cambridge University Press, New York (1986)Google Scholar
  14. 14.
    Roseman, I.J., Antoniou, A.A., Jose, P.E.: Appraisal determinants of emotions: constructing a more accurate and comprehensive theory. Cognition and Emotion 10(3), 241–277 (1996)CrossRefGoogle Scholar
  15. 15.
    Plutchik, R.: A general psychoevolutionary theory of emotion. In: Emotion: Theory, Research, and Experience: Theories of Emotion, vol. 1, pp. 3–33. Academic Press, New York (1980)Google Scholar
  16. 16.
    Ekman, P.: An argument for basic emotions. Cognition and Emotion 6 (3/4) (1992)Google Scholar
  17. 17.
    Russell, J.A.: A circumplex model of affect. Journal of Personality and Social Psychology 39, 1161–1178 (1980)CrossRefGoogle Scholar
  18. 18.
    Feldman Barrett, L., Russell, J.A.: Independence and bipolarity in the structure of current affect. Journal of Personality and Social Psychology 74(4), 967–984 (1998)CrossRefGoogle Scholar
  19. 19.
    Prkachin, K.M., Williams-Avery, R.M., Zwaala, C., Mills, D.E.: Cardiovascular changes during induced emotion: an application of Lang’s theory of emotional imagery. Journal of Psychosomatic Research 47(3), 255–267 (1999)CrossRefGoogle Scholar
  20. 20.
    Neumann, S.A., Waldstein, S.R.: Similar patterns of cardiovascular response during emotional activation as a function of affective valence and arousal and gender. Journal of Psychosomatic Research 50, 245–253 (2001)CrossRefGoogle Scholar
  21. 21.
    Malik, M., Bigger, J., Camm, A., Kleiger, R.: Heart rate variability - Standards of measurement, physiological interpretation, and clinical use. European Heart Journal 17, 354–381 (1996)Google Scholar
  22. 22.
    Cook, E.W., Lang, P.J.: Affective judgement and psychophysiological response. Dimensional covariation in the evaluation of pictorial stimuli. Journal of psychophysiology 3, 51–64 (1989)Google Scholar
  23. 23.
    Bradley, M., Greenwald, M.K., Hamm, A.O.: Affective picture processing. In: The Structure of Emotion, pp. 48–65. Hogrefe & Huber Publishers, Toronto (1993)Google Scholar
  24. 24.
    Roedema, T.M., Simons, R.F.: Emotion-processing deficit in alexithymia. Psychophysiology 36, 379–387 (1999)CrossRefGoogle Scholar
  25. 25.
    Wang, H., Prendinger, H., Igarashi, T.: Communicating Emotions in Online Chat Using Physiological Sensors and Animated Text. In: CHI 2004, Vienna, Austria, April 24-29, 2004, ACM, New York (2004)Google Scholar
  26. 26.
    Bickmore, T., Schulman, D.: The Comforting Presence of Relational Agents. In: CHI 2006, April 22-27, 2006, Montreal, Canada (2006)Google Scholar
  27. 27.
    Yazicioglu, R.F., Merken, P., Puers, R., Van Hoof, C.: A 60μW 60 nV/\(\sqrt{Hz}\) Readout Front-End for Portable Biopotential Acquisition Systems. In: IEEE International Solid-State Circuit Conference (ISSCC 2006), February 4-9, 2006, San Francisco Marriott, CA, USA (2006)Google Scholar
  28. 28.
    Koralewski Industrie-Elektronik oHG,
  29. 29.
    Mietus, J.E.: From Variance to pNNX, Harvard Medical School Boston (2006)Google Scholar
  30. 30.
    Malliani, A., Pagani, M., Lombardi, F., Cerutti, S.: Cardiovascular neural regulation explored in the frequency domain. Circulation 84, 1482–1492 (1991)Google Scholar
  31. 31.
    D1.2.1 - Scenarios and Audio Visual Concepts, e-SENSE project deliverable (September 2006)Google Scholar
  32. 32.
    Lichtenstein, A., Oehme, A., Kupschick, S.: Emotions in Ambient Intelligence - deriving affective states from physiological data. In: Affect and Emotion in Human-Computer Interaction, Springer, Heidelberg (to appear, 2007)Google Scholar
  33. 33.
    Sensinode Ltd:

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • A. Gluhak
    • 1
  • M. Presser
    • 1
  • L. Zhu
    • 1
  • S. Esfandiyari
    • 1
  • S. Kupschick
    • 2
  1. 1.Center for Communication Systems Research, The University of Surrey, Guilford, GU2 7XHUnited Kingdom
  2. 2.Human Factors Consult, Köpenicker Straße 325, Haus 40, 12555 BerlinGermany

Personalised recommendations