Advertisement

Towards Mood Based Mobile Services and Applications

  • A. Gluhak
  • M. Presser
  • L. Zhu
  • S. Esfandiyari
  • S. Kupschick
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4793)

Abstract

The introduction of mood as context of a mobile user opens up many opportunities for the design of novel context-aware services and applications. This paper presents the first prototype of a mobile system platform that is able to derive the mood of a person and make it available as a contextual building block to mobile services and application. The mood is derived based on physiological signals captured by a body sensor network. As a proof-of-concept application a simple mood based messaging service has been developed on top of the platform.

Keywords

Wireless body senor networks context-awareness data fusion mobile services mood based services 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    IST FP6 project e-SENSE, http://www.ist-e-sense.org/
  2. 2.
    Dey, A.K., Abowd, G.D.: Towards a better understanding of context and context-awareness. In: Proceedings of the Workshop on the What, Who, Where, When and How of Context-Awareness, CHI 2000 Conference on Human Factors in Computer Systems, ACM Press, New York (2000)Google Scholar
  3. 3.
  4. 4.
    IST FP6 project MOBILIFE, http://www.ist-mobilife.org/
  5. 5.
    Koolwaaij, J., Tarlano, A., Luther, M., Nurmi, P., Mrohs, B., Battestini, A., Vaidya, R.: Context Watcher - Sharing Context Information in Everyday Life, Web Technologies, Applications, and Services, WTAS 2006, Calgary, Canada (2006)Google Scholar
  6. 6.
    Cohen, I., Sebe, N., Garg, A., Lew, M.S., Huang, T.S.: Facial expression Recognition from Video Sequences. Computer Vision and Image Understanding 91(1-2), 160–187 (2003)CrossRefGoogle Scholar
  7. 7.
    Coulson, M.: Attributing Emotion to Static Body Postures: Recognition Accuracy, Confusions, and Viewpoint Dependence. In: Journal of Nonverbal Behavior, vol. 28(2), pp. 117–139(23). Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Ekman, P., Friesen, W.: Facial Action Coding System. Consulting Physiologists Press, Palo Alto (1977)Google Scholar
  9. 9.
    Scheirer, J., Fernandez, R., Picard, R.W.: Expression glasses: a wearable device for facial expression recognition. In: Conference on Human Factors in Computing Systems, Pittsburgh, Pennsylvania, pp. 262–263 (1999) ISBN:1-58113-158-5Google Scholar
  10. 10.
    Branco, P., Encarnação, L.M.: Affective computing for behavior-based UI adaptation. In: Proceedings of the Workshop on Behavior-based User Interface Customization, IUI 2004, Madeira, Portugal (January 13-16, 2004)Google Scholar
  11. 11.
    Jones, C.M., Jonsson, I.-M.: Automatic recognition of affective cues in the speech of car drivers to allow appropriate responses. In: Proceedings of the 19th conference of the computer-human interaction special interest group (CHISIG), Canberra, Australia (2005) ISBN:1-59593-222-4Google Scholar
  12. 12.
    Scherer, K.R., Ceschi, G.: Lost luggage emotion: A field study of emotion-antecedent appraisal. Motivation and Emotion 21, 211–235 (1997)CrossRefGoogle Scholar
  13. 13.
    Frijda, N.: The emotions, Studies in Emotion and Social Interaction. Cambridge University Press, New York (1986)Google Scholar
  14. 14.
    Roseman, I.J., Antoniou, A.A., Jose, P.E.: Appraisal determinants of emotions: constructing a more accurate and comprehensive theory. Cognition and Emotion 10(3), 241–277 (1996)CrossRefGoogle Scholar
  15. 15.
    Plutchik, R.: A general psychoevolutionary theory of emotion. In: Emotion: Theory, Research, and Experience: Theories of Emotion, vol. 1, pp. 3–33. Academic Press, New York (1980)Google Scholar
  16. 16.
    Ekman, P.: An argument for basic emotions. Cognition and Emotion 6 (3/4) (1992)Google Scholar
  17. 17.
    Russell, J.A.: A circumplex model of affect. Journal of Personality and Social Psychology 39, 1161–1178 (1980)CrossRefGoogle Scholar
  18. 18.
    Feldman Barrett, L., Russell, J.A.: Independence and bipolarity in the structure of current affect. Journal of Personality and Social Psychology 74(4), 967–984 (1998)CrossRefGoogle Scholar
  19. 19.
    Prkachin, K.M., Williams-Avery, R.M., Zwaala, C., Mills, D.E.: Cardiovascular changes during induced emotion: an application of Lang’s theory of emotional imagery. Journal of Psychosomatic Research 47(3), 255–267 (1999)CrossRefGoogle Scholar
  20. 20.
    Neumann, S.A., Waldstein, S.R.: Similar patterns of cardiovascular response during emotional activation as a function of affective valence and arousal and gender. Journal of Psychosomatic Research 50, 245–253 (2001)CrossRefGoogle Scholar
  21. 21.
    Malik, M., Bigger, J., Camm, A., Kleiger, R.: Heart rate variability - Standards of measurement, physiological interpretation, and clinical use. European Heart Journal 17, 354–381 (1996)Google Scholar
  22. 22.
    Cook, E.W., Lang, P.J.: Affective judgement and psychophysiological response. Dimensional covariation in the evaluation of pictorial stimuli. Journal of psychophysiology 3, 51–64 (1989)Google Scholar
  23. 23.
    Bradley, M., Greenwald, M.K., Hamm, A.O.: Affective picture processing. In: The Structure of Emotion, pp. 48–65. Hogrefe & Huber Publishers, Toronto (1993)Google Scholar
  24. 24.
    Roedema, T.M., Simons, R.F.: Emotion-processing deficit in alexithymia. Psychophysiology 36, 379–387 (1999)CrossRefGoogle Scholar
  25. 25.
    Wang, H., Prendinger, H., Igarashi, T.: Communicating Emotions in Online Chat Using Physiological Sensors and Animated Text. In: CHI 2004, Vienna, Austria, April 24-29, 2004, ACM, New York (2004)Google Scholar
  26. 26.
    Bickmore, T., Schulman, D.: The Comforting Presence of Relational Agents. In: CHI 2006, April 22-27, 2006, Montreal, Canada (2006)Google Scholar
  27. 27.
    Yazicioglu, R.F., Merken, P., Puers, R., Van Hoof, C.: A 60μW 60 nV/\(\sqrt{Hz}\) Readout Front-End for Portable Biopotential Acquisition Systems. In: IEEE International Solid-State Circuit Conference (ISSCC 2006), February 4-9, 2006, San Francisco Marriott, CA, USA (2006)Google Scholar
  28. 28.
    Koralewski Industrie-Elektronik oHG, http://www.koralewski.de/
  29. 29.
    Mietus, J.E.: From Variance to pNNX, Harvard Medical School Boston (2006)Google Scholar
  30. 30.
    Malliani, A., Pagani, M., Lombardi, F., Cerutti, S.: Cardiovascular neural regulation explored in the frequency domain. Circulation 84, 1482–1492 (1991)Google Scholar
  31. 31.
    D1.2.1 - Scenarios and Audio Visual Concepts, e-SENSE project deliverable (September 2006)Google Scholar
  32. 32.
    Lichtenstein, A., Oehme, A., Kupschick, S.: Emotions in Ambient Intelligence - deriving affective states from physiological data. In: Affect and Emotion in Human-Computer Interaction, Springer, Heidelberg (to appear, 2007)Google Scholar
  33. 33.
    Sensinode Ltd: http://www.sensinode.com

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • A. Gluhak
    • 1
  • M. Presser
    • 1
  • L. Zhu
    • 1
  • S. Esfandiyari
    • 1
  • S. Kupschick
    • 2
  1. 1.Center for Communication Systems Research, The University of Surrey, Guilford, GU2 7XHUnited Kingdom
  2. 2.Human Factors Consult, Köpenicker Straße 325, Haus 40, 12555 BerlinGermany

Personalised recommendations