Skip to main content

Neuroradiology: History and New Research Technologies

  • Chapter
  • 5056 Accesses

Abstract

Neuroradiology is a part of general radiology that is dedicated to the diagnostic examination of the brain and spinal cord. The history of neuroradiology, as a whole, reflects the history of radiology development. The birthday of radiology could be considered as 8 November 1895; it was on this day that W. K. Roentgen was experimenting with a cathode tube and discovered a new type of radiation (emission) with high penetrating capacity. Eventually he named this new type of radiation the “X-ray”.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alsop D, Detre J (1996) Reduced transit time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Metab 16:1236–1249

    Article  CAS  Google Scholar 

  2. Aroutiunov A, Kornienko V (1971) Total cerebral angiography. Medicine Publishers, Moscow, p 167 (in Russian)

    Google Scholar 

  3. Batchelor P et al (2006) Quantification of the shape of fibre tracts. Magn Reson Med 55:896–903

    Article  Google Scholar 

  4. Bianchi M et al (2007) Treatment monitoring of brain creatine deficiency syndromes: a 1H- and 31P MR spectroscopy study. AJNR Am J Neuroradiol 28:548–554

    PubMed  CAS  Google Scholar 

  5. Bluml S et al (2003) Membrane phospholipids and high-energy metabolites in childhood ataxia with CNS hypomyelination. Neurology 61:648–654

    PubMed  CAS  Google Scholar 

  6. Braun K et al (1999) Cerebral metabolism in experimental hydrocephalus: an in vivo 1H and 31P magnetic resonance spectroscopy study. J Neurosurg 91:660668

    Google Scholar 

  7. Cha S (2006) Update on brain tumour imaging: from anatomy to physiology. AJNR Am J Neuroradiol 27:475–487

    PubMed  CAS  Google Scholar 

  8. Cha S et al (2007) Differentiation of glioblastoma multiforme and single brain metastasis by peak height and percentage of signal intensity recovery derived from dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol 28:1078–1084

    Article  PubMed  CAS  Google Scholar 

  9. Chai J-W et al (2007) Characterisation of focal brain lesions by gradient-echo arterial spine-tagging perfusion imaging. Neuroradiol J 20:149–158

    Google Scholar 

  10. Chepuri N, Yen Yi-Fen, Burdette J (2002) Diffusion anisotropy in the corpus callosum. AJNR Am J Neuroradiol 3:803–808

    Google Scholar 

  11. Feoktistov V (1938) The theory of tomography. Vestn Roentgenol Radiol 21:143–152 (in Russian)

    Google Scholar 

  12. Hesseltine S et al (2007) Application of diffusion tensor imaging and fibre tractography. Appl Radiol 1:8–23

    Google Scholar 

  13. Holshouser B et al (2006) Prospective longitudinal proton magnetic resonance spectroscopic imaging in adult traumatic brain injury. J Magn Reson Imaging 24:33–40

    Article  PubMed  Google Scholar 

  14. Hourani R et al (2006) Proton magnetic resonance spectroscopic imaging to differentiate between non-neoplastic lesions and brain tumours in children. J Magn Reson Imaging 23:99–107

    Article  PubMed  Google Scholar 

  15. Karsmar G et al (1991) P-31 spectroscopy study of response of superficial human tumors to therapy. Radiology 179:149–153

    Google Scholar 

  16. Knaap M van der et al (1990) Age-dependent changes in localised proton and phosphorus MR spectroscopy of the brain. Radiology 176:509–515

    Google Scholar 

  17. Knaap M van der et al (1992) 1H and 31P magnetic resonance spectroscopy of the brain in degenerative cerebral disorders. Ann Neurol 31:202–211

    Article  Google Scholar 

  18. Konovalov A, Kornienko V (1985) Computed tomography in neurosurgical clinic. Moscow Medicine Publishers, Moscow, p 290 (in Russian)

    Google Scholar 

  19. Konovalov A, Kornienko V, Ozerova V, Pronin I (2001) Neuroimaging in paediatrics. Antidor, Moscow. p 435 (in Russian)

    Google Scholar 

  20. Konovalov A, Kornienko V, Pronin I (1997) Magnetic resonance imaging in neurosurgery. Vidar, Moscow, p 427 (in Russian)

    Google Scholar 

  21. Kornienko V, Pronin I, Fadeeva L et al (2000) Diffusion weighted imaging in study of brain tumours and peritumoural edema. J Vopr Neurochir 3:4–17 (in Russian)

    Google Scholar 

  22. Kornienko V, Pronin I, Golanov A et al (2004) Neuroimaging of primary lymphomas of brain. J Med. Visualis 1:6–15 (in Russian)

    Google Scholar 

  23. Kornienko V, Pronin I, Pyanykh O et al (2007) Study of brain perfusion, using CT. J Med. Visualis 2:70–81.

    Google Scholar 

  24. Le Bihan D, Breton E (1985) Imagerie de diffusion invivo par resonance magnetique nucleaire. CR Acad Sc II Paris 301:1109–1112

    Google Scholar 

  25. Le Bihan D, Turner R (1991) Intravoxel incoherent motion imaging using spin echoes. Magn Reson Med 19:221–227

    Article  PubMed  Google Scholar 

  26. Le Bihan D, P van Zijl (2002) From the diffusion coefficient to the diffusion tensor. NMR Biomed 15:431–434

    Article  PubMed  Google Scholar 

  27. Lee S-K et al (2005) Diffusion-tensor MR imaging and fibre tractography: a new method of describing aberrant fibre connection in developmental CNS anomalies. Radiographics 25:53–68

    Article  PubMed  Google Scholar 

  28. Leemans A et al (2006) Multiscaled white matter fibre track coregistration: a feature-based approach to align diffusion tensor data. Magn Reson Med, 55:1414–1423

    Article  PubMed  CAS  Google Scholar 

  29. Maintz D et al (2002) Phosphorus-31 MR spectroscopy of normal adult human brain and brain tumours. NMR Biomed 15:18–27

    Article  PubMed  CAS  Google Scholar 

  30. Meng L (2004) MR spectroscopy of brain tumours. Magn Reson Imaging 15:291–313

    Article  Google Scholar 

  31. Mori S, van Zijl P (2002) Fibre tracking: principles and strategies. NMR Biomed 15:468–480

    Article  PubMed  Google Scholar 

  32. Moseley M, Butts K, Yenary M et al (1995) Clinical aspects of DWI. NMR Biomed 8:387–396

    Article  PubMed  CAS  Google Scholar 

  33. Mulkern R, Gudbjartsson H, Westin C еt al (1999) Multicomponent apparent diffusion coefficients in human brain. NMR Biomed 12:51–62

    Article  PubMed  CAS  Google Scholar 

  34. Nennig E et al (2007) Functional magnetic resonance imaging for cranial neuronavigation: methods for automated and standardised data processing and management. Neuroradiol J 20:159–158

    Google Scholar 

  35. O’Donnell L-J et al (2006) A method for clustering white matter fiber tracts. Neuroradiol J 27:1032–1036

    CAS  Google Scholar 

  36. Pierpaoli C, Jezzard P, Basser PJ et al (1996) Diffusion tensor MR imaging of the human brain. Radiology 201:637–648

    PubMed  CAS  Google Scholar 

  37. Podoprigora A, Pronin I, Fadeeva L et al (2003) Proton MR spectroscopy in ischaemic brain disease. ZH Neurol Psikhiatr SS Korsakova 9(Suppl.):162 (in Russian)

    Google Scholar 

  38. Pouratian N, Sheth S, Bookheimer S et al (2003) Applications and limitations of perfusion-dependent functional brain mapping for neurosurgical guidance. Neurosurg Focus 15:1

    Google Scholar 

  39. Pronin I, Kornienko V, Podoprigora A et al (2002) Complex MR imaging of brain abscesses. J Vopr Neurochir 1:7–11 (in Russian)

    Google Scholar 

  40. Ramsey N, Hoogduin H, Jansma J (2002) Functional MRI experiments: acquisition, analysis, and interpretation of data. Eur Neuropsychopharmacol 12:517–526

    Article  PubMed  CAS  Google Scholar 

  41. Rinck P (2003) Magnetic resonance in medicine. The basic textbook of the European Magnetic Resonance Forum. Blackwell, London, p 246

    Google Scholar 

  42. Rodionov P, Serkov S, Fadeeva L (2002) Modern software in practice of functional diagnosis specialist. PC Mag 4:134–137 (in Russian)

    Google Scholar 

  43. Sen P-N, Basser P-J (2005) A model for diffusion in white matter in the brain. Biophys J 89:2927–2938

    Article  PubMed  CAS  Google Scholar 

  44. Serbinenko F (1974) Balloon catheterisation and occlusion of major cerebral vessels. J Neurosurgery 41:125–145

    Article  CAS  Google Scholar 

  45. Sorensen A, Reimer P (2000) Cerebral perfusion imaging: principles and current applications. Thieme, Stuttgart, p 152

    Google Scholar 

  46. Stadlbauer A et al (2007) Changes in fibre integrity, diffusivity, and metabolism of the pyramidal tract adjacent to gliomas: a quantitative diffusion tensor fibre tracking and MR spectroscopic imaging study. AJNR Am J Neuroradiol 28:462–469

    PubMed  CAS  Google Scholar 

  47. Sunaert S (2006) Presurgical planning for tumour resectioning. J Magn Reson Imaging 23:887–905

    Article  PubMed  Google Scholar 

  48. Tanner J (1970) Use of stimulated echo in NMR diffusion studies. J Chem Phys 52:2523–2526

    Article  CAS  Google Scholar 

  49. Ting-Yim L (2002) Functional CT: physiological models. Trends Biotechnol 20:1–8

    Article  Google Scholar 

  50. Ulrich M et al (2007) 31P-1H echo planar spectroscopic imaging of human brain in vivo. Magn Reson Med 57:784–790

    Article  PubMed  CAS  Google Scholar 

  51. Ureniak J et al (1992) Specific expression of N-acetylaspartate in neurons, oligodendrocyte type-2 astrocyte progenitors, and immature oligodendrocytes in vitro. J Neurochem 59:55–61

    Article  Google Scholar 

  52. Waaijer A et al (2007) Reproducibility of quantitative CNS brain perfusion measurements in patients with symptomatic unilateral carotid artery stenosis. AJNR Am J Neuroradiol 28:927–932

    PubMed  CAS  Google Scholar 

  53. Zavoisky EK (1945) Spin-magnetic resonance in paramagnetics. J Phys Acad Sci USSR 9:211–245 (in Russian)

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2009). Neuroradiology: History and New Research Technologies. In: Diagnostic Neuroradiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75653-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75653-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75652-1

  • Online ISBN: 978-3-540-75653-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics