Skip to main content

Evolutionary Genomics: Linking Macromolecular Structure, Genomes and Biological Networks

  • Chapter
Book cover Molecular Mechanisms of Plant and Microbe Coexistence

Part of the book series: Soil Biology ((SOILBIOL,volume 15))

  • 2525 Accesses

What makes individuals, populations, species and organismal lineages unique? Are genetic complements enough to define phenotypic repertoires? Only 1.5% differences in nucleic acid sequence separate humans from chimpanzee, two species believed to have diverged from each other over six million years ago (Cheng et al. 2005). Yet humans differ notably from chimpanzees and other primates. Are nucleic acid sequence differences at the gene level important? A recent wholegenome analysis of concatenated gene sequences shows that higher organisms have been given more taxonomic resolution than microbes; organisms assigned to separate phyla in Eukarya would clearly belong to a same phylum in the prokaryotic classification (Ciccarelli et al. 2006). Yet they appear to be phenotypically more plastic expressing greater morphological diversity. We may be tempted to state that differences in phenotypes between species are due to limited sets of coding genes that make critical proteins, or to differential regulation of a larger number of protein coding genes. The discovery of a diverse modern RNA world with regulatory function could support the differential regulatory explanation (Bartel 2004). We could also argue that it is not the gene repertoire what counts but the encoded proteins. Protein sequence is extraordinarily diverse and so is the three-dimensional (3D) structure of proteins and their associated functions (Chothia et al. 2003). However, protein sequences encoded in the genomes of the millions of species that currently inhabit earth cover necessarily only a minute fraction (at most one in 10−300) of the enormous permutational space defined by amino acid sequence. Yet the tools of structural genomics and protein structure determination reveal that this limited exploration of sequence space has uncovered considerable diversity in structure and biological function (e.g. enzymatic catalysis; Gutteridge and Thornton 2005). We could also argue that it is the unique modular structure of proteins that makes the difference. A substantial portion of proteins is made of multiple domains, units of compact structure that can combine in different ways to provide structural diversity (Vogel et al. 2004). Are differences at this level crucial?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ancel LW, Fontana W (2000) Plasticity, evolvability, and modularity in RNA. J Exp Zool (Mol Dev Evol) 288:242-283

    Google Scholar 

  • Babajilde A, Farber R, Hofacker IL, Inman J, Lapedes AS, Stadler PF (2001) Exploring protein sequence space using knowledge based potentials. J Theor Biol 212:35-46

    Google Scholar 

  • Bajaj M, Blundell T (1984) Evolution and the tertiary structure of proteins. Annu Rev Biophys Bioeng 13:453-492

    PubMed  Google Scholar 

  • Barabási AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nature Rev 5:101-113

    Google Scholar 

  • Bartel DP (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281-297

    PubMed  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356-363

    PubMed  Google Scholar 

  • Bhan A, Galas DJ, Dewey TG (2002) A duplication growth model of gene expression networks. Bioinformatics 18:1486-1493

    PubMed  Google Scholar 

  • Billoud B, Guerrucci MA, Masselot M, Deutsch JS (2000) Cirripede phylogeny using a novel approach: molecular morphometrics. Mol Biol Evol 17:1435-1445

    PubMed  Google Scholar 

  • Caetano-Anollés G (2001) Novel strategies to study the role of mutation and nucleic acid structure in evolution. Plant Cell Tissue Org Culture 67:115-132

    Google Scholar 

  • Caetano-Anollés G (2002a) Evolved RNA secondary structure and the rooting of the universal tree of life. J Mol Evol 54:333-345

    PubMed  Google Scholar 

  • Caetano-Anollés G (2002b) Tracing the evolution of RNA structure in ribosomes. Nucleic Acids Res 30:2527-2587

    Google Scholar 

  • Caetano-Anollés G (2005) Grass evolution inferred from chromosomal rearrangements and geo-metrical and statistical features in RNA structure. J Mol Evol 60:635-652

    PubMed  Google Scholar 

  • Caetano-Anollés G, Caetano-Anollés D (2003) An evolutionarily structured universe of protein architecture. Genome Res 13:1563-1571

    PubMed  Google Scholar 

  • Caetano-Anollés G, Caetano-Anollés D (2005) Universal sharing patterns in proteomes and evolu-tion of protein fold architecture and life. J Mol Evol 60:484-498

    PubMed  Google Scholar 

  • Caetano-Anollés G, Kim H-S, Mittenthal JE (2007) The origins of modern metabolism inferred from phylogenomic analysis of protein architecture. Proc Natl Acad Sci USA 104:9358-9363

    PubMed  Google Scholar 

  • Chandonia J-M, Kim S-H (2006) Structural proteomics of minimal organisms: conservation of protein fold usage and evolutionary implications. BMC Struct Biol 6:7

    PubMed  Google Scholar 

  • Cheng Z, Ventura M, She X, Khaitovich P, Graves T, Osoegawa K, Church D, DeJong P, Wilson RK, Paabo S, Rocchi M, Eichler EE (2005) A genome-wide comparison of recent chimpanzee and human segmental duplications. Nature 437:88-93

    PubMed  Google Scholar 

  • Chothia C, Gough J, Vogel C, Teichmann SA (2003) Evolution of the protein repertoire. Science 300:1701-1703

    PubMed  Google Scholar 

  • Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (2006) Towards automatic reconstruction of a highly resolved tree of life. Science 311:1283-1287

    PubMed  Google Scholar 

  • Collins LJ, Moulton V, Penny D (2000) Use of RNA secondary structure for studying the evolu-tion of RNase P and RNase MRP. J Mol Evol 51:194-204

    PubMed  Google Scholar 

  • Delsuc F. Brinkmann H, Philippe H (2005) Phylogenomics and the reconstruction of the tree of life. Nature Rev Genet 6:361-375

    PubMed  Google Scholar 

  • Doolittle RF (2005) Evolutionary aspects of whole-genome biology. Curr Opin Struct Biol 15:248-253

    PubMed  Google Scholar 

  • Eddy SR (2001) Non-coding RNA genes and the modern RNA world. Nat Rev Genet 2:919-929

    PubMed  Google Scholar 

  • Efimov AV (1997) Structural trees for protein superfamilies. Proteins 28:241-260

    PubMed  Google Scholar 

  • Eliceiri GL (1999) Small nucleolar RNAs. Cell Mol Life Sci 56:22-31

    PubMed  Google Scholar 

  • Fontana W (2002) Modelling ‘evo-devo’ with RNA. BioEssays 24:1164-1177

    PubMed  Google Scholar 

  • Fontana W, Konings DA, Stadler PF, Schuster P (1993) Statistics of RNA secondary structures. Biopolymers 33:1389-1404

    PubMed  Google Scholar 

  • Frank DN, Pace NR (1998) Ribonuclease P: unity and diversity in a tRNA processing ribozyme. Annu Rev Biochem 67:153-180

    PubMed  Google Scholar 

  • Gerstein M (1998) Patterns of protein-fold usage in eight microbial genomes: a comprehensive structural census. Proteins Struct Funct Genet 33:518-534

    PubMed  Google Scholar 

  • Gerstein M, Hegyi H (1998) Comparing genomes in terms of protein structure: Surveys of a finite parts list. FEMS Microbiol Rev 22:277-304

    PubMed  Google Scholar 

  • Gilbert W (1986) The RNA world. Nature 319:618

    Google Scholar 

  • Gladyshev GP, Ershov YA (1982) Principles of the thermodynamics of biological systems. J Theor Biol 94:301-343

    PubMed  Google Scholar 

  • Grant A, Lee D, Orengo C (2004) Progress towards mapping the universe of protein folds. Genome Biol 5:107

    PubMed  Google Scholar 

  • Grishin NV (2001) Fold change in evolution of protein structures. J Struct Biol 134:167-185

    PubMed  Google Scholar 

  • Gultyaev PA, van Batenburg FHD, Pleij CWA (2002) Selective pressures on RNA hairpins in vivo and in vitro. J Mol Evol 54:1-8

    PubMed  Google Scholar 

  • Gutteridge A, Thornton JM (2005) Understanding nature’s catalytic toolkit. Trends Biochem Sci 30:622-629

    PubMed  Google Scholar 

  • Harrison A, Pearl F, Mott R, Thornton J, Orengo C (2002) Quantifying the similarities within fold space. J Mol Biol 323:909-926

    PubMed  Google Scholar 

  • Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 401:C47-C52

    Google Scholar 

  • Hermann T, Patel DJ (1999) Stitching together RNA tertiary architectures. J Mol Biol 294:829-849

    PubMed  Google Scholar 

  • Higgs PG (1993) RNA secondary structure: a comparison of real and random sequences. J Phys I France 3:43-59

    Google Scholar 

  • Higgs PG (1995) Thermodynamic properties of transfer RNA: a computational study. J Chem Soc Faraday Trans 91:2531-2540

    Google Scholar 

  • Higgs PG (2000) RNA secondary structure: physical and computational aspects. Q Rev Biophys 33:199-253

    PubMed  Google Scholar 

  • Hou J, Sims GE, Zhang C, Kim S-H (2003) A global representation of the protein fold space. Proc Natl Acad Sci USA 100:2386-2390

    PubMed  Google Scholar 

  • House CH, Fitz-Gibbon ST (2002) Using homolog groups to create a whole-genomic tree of free-living organisms: an update. J Mol Evol 54:539-547

    PubMed  Google Scholar 

  • Hutvágner G, Zamore PD (2002) RNAi: nature abhors a double-strand. Curr Opin Genet Develop 12:225-232

    Google Scholar 

  • Kacser H, Beeby R (1984) On the origin of enzyme species by means of natural selection. J Mol Evol 20:38-51

    PubMed  Google Scholar 

  • Keefe AD, Szostak JW (2001) Functional proteins from a random-sequence library. Nature 410:715-718

    PubMed  Google Scholar 

  • Keenan RJ, Freymann DM, Stroud RM, Walter P (2001) The signal recognition particle. Annu Rev Biochem 70:755-775

    PubMed  Google Scholar 

  • Kim H-S, Mittenthal J, Caetano-Anollés G (2006) MANET: tracing evolution of protein architec-ture in metabolic networks. BMC Bioinformatics 7:351

    PubMed  Google Scholar 

  • Kitano H (2002) Computational systems biology. Nature 420:206-210

    PubMed  Google Scholar 

  • Koonin EV, Aravind L, Kondrashov AS (2000) The impact of comparative genomics on our understanding of evolution. Cell 101:573-576

    PubMed  Google Scholar 

  • Kunin V, Cases I, Enright AJ, de Lorenzo V, Ouzounis CA (2003) Myriads of protein families, and still counting. Genome Biol 4:401

    PubMed  Google Scholar 

  • Kurland CG, Collins LJ, Penny D (2006) Genomics and the irreducible nature of eukaryote cells. Science 312:1011-1014

    PubMed  Google Scholar 

  • Kyrpides N (1999) Genomes Online Database (GOLD): a monitor of complete and ongoing genome projects worldwide. Bioinformatics 15:773-774

    PubMed  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843-854

    PubMed  Google Scholar 

  • Lin J, Gerstein M (2000). Whole-genome trees based on the occurrence of folds and orthologs: implications for comparing genomes on different levels. Genome Res 10:808-818

    PubMed  Google Scholar 

  • Maizels N, Weiner AM (1994) Phylogeny from function: evidence from the molecular fossil record that tRNA originated in replication, not translation. Proc Natl Acad Sci 91:6729-6734

    PubMed  Google Scholar 

  • Mossell E (2003) On the impossibility of reconstructing ancestral data and phylogenies. J Comp Biol 10:669-678

    Google Scholar 

  • Murzin A (1998) How far divergent evolution goes in proteins. Curr Op Struct Biol 8:380-387

    Google Scholar 

  • Murzin A, Brenner SE, Hubbard T, Clothia C (1995) SCOP: a structural classification of proteins for the investigation of sequences and structures. J Mol Biol 247:536-540

    PubMed  Google Scholar 

  • O’Malley MA, Dupré J (2005) Fundamental issues in systems biology. BioEssays 27:1270-1276

    PubMed  Google Scholar 

  • Ochman H, Moran NA (2001) Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis. Science 292:1096-1098

    PubMed  Google Scholar 

  • Orengo CA, Michie AD, Jones S, Jones DJ, Swindells MB, Thornton JM (1997) CATH: a hierar-chic classification of protein domain structures. Structure 5:1093-1108

    PubMed  Google Scholar 

  • Page RDM, Holmes EC (1998) Molecular evolution: a phylogenetic approach. Blackwell Science, Oxford

    Google Scholar 

  • Pastor-Satorras R, Smith E, Sole R (2003) Evolving protein interaction networks through gene duplication. J Theor Biol 222:199-210

    PubMed  Google Scholar 

  • Penny D, Hendy MD, Poole AM (2003) Testing fundamental evolutionary hypotheses. J Theor Biol 223:377-385

    PubMed  Google Scholar 

  • Philippe H, Laurent J (1998) How good are deep phylogenetic trees? Curr Opin Genet Dev 8:616-623

    PubMed  Google Scholar 

  • Ponting CP, Russell RR (2002) The natural history of protein domains. Annu Rev Biophys Biomol Struct 31:45-71

    PubMed  Google Scholar 

  • Poole A, Jeffares DC, Penny D (1998) The path from the RNA world. J Mol Evol 46:1-17

    PubMed  Google Scholar 

  • Przytycka T, Aurora R, Rose GD (1999) A protein taxonomy based on secondary structure. Nat Struct Biol 6:672-682

    PubMed  Google Scholar 

  • Qian J, Luscombe NM, Gerstein M (2001) Protein family and fold occurrence in genomes: power-law behavior and evolutionary model. J Mol Biol 313:673-681

    PubMed  Google Scholar 

  • Riley M, Labedan B (1997) Protein evolution viewed through Escherichia coli protein sequences: introducing the notion of a structural segment of homology, the module. J Mol Biol 268:857-868

    PubMed  Google Scholar 

  • Rokas A, Holland PWK (2000) Rare genomic changes as a tool for phylogenetics. Trends Ecol Evol 15:454-459

    PubMed  Google Scholar 

  • Rzetsky A, Gomez SM (2001) Birth of scale-free molecular networks and the number of distinct DNA and protein domains per genome. Bioinformatics 17:988-996

    Google Scholar 

  • Schmidt S, Sunyaev S, Bork P, Dandekar T (2003) Metabolites: a helping hand for pathway evolu-tion? Trends Biochem Sci 28:336-341

    PubMed  Google Scholar 

  • Schultes EA, Bartel DP (2000) One sequence, two ribozymes: implications for the emergence of new ribozyme folds. Science 289:448-452

    PubMed  Google Scholar 

  • Schultes EA, Hraber PT, LaBean TH (1999) Estimating the contributions of selection and self-organization in RNA secondary structure. J Mol Evol 49:76-83

    PubMed  Google Scholar 

  • Schumann GL, D’Arcy CJ (2006) Essential plant pathology. APS Press, St Paul, Minnesota

    Google Scholar 

  • Schuster P, Stadler PF (2003) Networks in molecular evolution. Complexity 8:34-42

    Google Scholar 

  • Seffens W, Digby D (1999) mRNA have greater negative folding free energies than shuffled or codon choice randomized sequences. Nucleic Acids Res 27:1578-1584

    PubMed  Google Scholar 

  • Sober E, Steel M (2002) Testing the hypothesis of common ancestry. J Theor Biol 218:395-408

    PubMed  Google Scholar 

  • Söding J, Lupas AN (2003) More than the sum of their parts: on the evolution of proteins from peptides. BioEssays 25:837-846

    PubMed  Google Scholar 

  • Stegger G, Hofman H, Fortsch J, Gross HJ, Randles JW, Sanger HL, Riesner D (1984) Conformational transitions in viroids and virusoids: comparison of results from energy mini-mization algorithm and from experimental data. J Biomol Struct Dynam 2:543-571

    Google Scholar 

  • Storz G (2002) An expanding universe of noncoding RNAs. Science 296:1260-1263

    PubMed  Google Scholar 

  • Sun F-J, Caetano-Anollés G (2008) The origin and evolution of tRNA inferred from phylogenetic analysis of structure. J Mol Evol 66:21-35

    PubMed  Google Scholar 

  • Sun F-J, Fleudépine S, Bousquet-Antonelli C, Caetano-Anollés G, Deragon J-M (2007) Common evolutionary trends for tRNA-derived SINE RNA structures. Trends Genet 23:26-33

    PubMed  Google Scholar 

  • Swain TD, Taylor DJ (2003) Structural rRNA characters support monophyly of raptorial limbs and paraphyly of limb specialization in water fleas. Proc R Soc London B 270:887-896

    Google Scholar 

  • Taylor WR (2002) A ‘periodic table’ for protein structures. Nature 416:657-660

    PubMed  Google Scholar 

  • Vogel C, Bashton M, Kerrison ND, Chothia C, Teichmann SA (2004) Structure, function and evolution of multidomain proteins. Curr Opin Struct Biol 14:208-216

    PubMed  Google Scholar 

  • Vukmirovic OG, Tilghman SM (2000) Exploring genome space. Nature 405:820-822

    PubMed  Google Scholar 

  • Wagner A (2003) How the global structure of protein interaction networks evolves. Proc R Soc Lond B 270:457-466

    Google Scholar 

  • Wang M, Caetano-Anollés G (2006) Evolution inferred from domain combination in proteins. Mol Biol Evol 23:2444-2454

    PubMed  Google Scholar 

  • Wang M, Boca SM, Kalelkar R, Mittenthal JE, Caetano-Anollés G (2006) A phylogenomic recon-struction of the protein world based on a genomic census of protein fold architecture. Complexity 12:27-40

    Google Scholar 

  • Wang M, Yafremava LS, Caetano-Anollés D, Mittenthal JE, Caetano-Anollés G (2007) Reductive evolution of architectural repertoires in proteomes and the birth of the tripartite world. Genome Res 17:1572-1585

    PubMed  Google Scholar 

  • Washietl S, Hofacker IL, Lukasser M, Hüttenhofer A, Stadler PF (2005) Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome. Nat Biotechnol 23:1383-1389

    PubMed  Google Scholar 

  • White SH (1994) Global statistics of protein sequences: implications for the origin, evolution, and prediction of structure. Annu Rev Biophys Biomol Struct 23:407-439

    PubMed  Google Scholar 

  • Woese CR (2000) The universal ancestor. Proc Natl Acad Sci USA 95:6854-6859

    Google Scholar 

  • Wolf YI, Brenner SE, Bash PA, Koonin EV (1999) Distribution of protein folds in the three superkingdoms of life. Genome Res 9:17-26

    PubMed  Google Scholar 

  • Wolf YI, Rogozin IB, Grishin NV, Koonin EV (2002) Genome trees and the tree of life. Trends Genet 18:472-479

    PubMed  Google Scholar 

  • Yang S, Doolittle RF, Bourne PE (2005) Phylogeny determined by protein domain content. Proc Natl Acad Sci USA 102:373-378

    PubMed  Google Scholar 

  • Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN, Cate JHD, Noller HF (2001) Crystal structure of the ribosome at 5.5 Å resolution. Science 292:883-896

    PubMed  Google Scholar 

  • Zhang C, Kim SH (2000) A comprehensive analysis of the Greek key motifs in protein β-barrels and β-sandwiches. Proteins 40:409-419

    PubMed  Google Scholar 

  • Zhang C, Kim SH (2003) Overview of structural genomics: from structure to function. Curr Op Chem Biol 7:28-32

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Caetano-Anollés, G. (2008). Evolutionary Genomics: Linking Macromolecular Structure, Genomes and Biological Networks. In: Nautiyal, C.S., Dion, P. (eds) Molecular Mechanisms of Plant and Microbe Coexistence. Soil Biology, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75575-3_6

Download citation

Publish with us

Policies and ethics