A Model Driven Modernization Approach for Automatically Deriving Multidimensional Models in Data Warehouses

  • Jose-Norberto Mazón
  • Juan Trujillo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4801)


Data warehouses integrate several operational sources to provide a multidimensional (MD) analysis of data. Therefore, the development of a data warehouse claims for an in-depth analysis of these data sources. Several approaches have been presented to obtain multidimensional structures from data sources in order to guide this development. However, these approaches assume that a wide documentation of the data sources is available and only provide informal guidelines to support the discovery of MD elements. Therefore, this task may become highly difficult for complex and large data sources (e.g. legacy systems). To overcome these problems, we consider the development of the data warehouse as a modernization scenario that addresses the analysis of the available data sources, thus discovering MD structures to either derive a data-driven conceptual MD model or reconcile a requirement-driven conceptual MD model with data sources. Specifically, we use concepts from Architecture Driven Modernization (ADM) in order to automatically perform the following tasks: (i) obtain a logical representation of data sources (ii) mark this logical representation with MD concepts, and (iii) derive a conceptual MD model from the marked model. Finally, we have provided a case study based on a real world project in order to exemplify the application of our approach.


Data Warehouse Logical Representation Fact Attribute Model Drive Architecture Data Dictionary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Inmon, W.: Building the Data Warehouse. Wiley & Sons, Chichester (2002)Google Scholar
  2. 2.
    Kimball, R., Ross, M.: The Data Warehouse Toolkit. Wiley & Sons, Chichester (2002)Google Scholar
  3. 3.
    Golfarelli, M., Maio, D., Rizzi, S.: The Dimensional Fact Model: A conceptual model for data warehouses. Int. J. Cooperative Inf. Syst. 7(2-3), 215–247 (1998)CrossRefGoogle Scholar
  4. 4.
    Hüsemann, B., Lechtenbörger, J., Vossen, G.: Conceptual data warehouse modeling. In: 2nd Int. Workshop on Design and Management of Data Warehouses, DMDW 2000Google Scholar
  5. 5.
    Giorgini, P., Rizzi, S., Garzetti, M.: Goal-oriented requirement analysis for data warehouse design. 8th Int. Workshop on Data Warehousing and OLAP, DOLAP, 47–56 (2005)Google Scholar
  6. 6.
    Mazón, J.N., Trujillo, J., Lechtenbörger, J.: A set of QVT relations to assure the correctness of data warehouses by using multidimensional normal forms. In: Embley, D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215, pp. 385–398. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Mazón, J.N., Trujillo, J., Lechtenbörger, J.: Reconciling requirement-driven data warehouses with data sources via multidimensional normal forms. Data & Knowledge Engineering (doi:10.1016/ j.datak.2007.04.004)Google Scholar
  8. 8.
    Rizzi, S., Abelló, A., Lechtenbörger, J., Trujillo, J.: Research in data warehouse modeling and design: dead or alive? In: 9th Int. Workshop on Data Warehousing and OLAP, DOLAP, pp. 3–10 (2006)Google Scholar
  9. 9.
    Seacord, R., Plakosh, D., Lewis, G.: Modernizing Legacy Systems: Software Technologies, Engineering Processes and Business Practices. Addison-Wesley, London, UK (2003)Google Scholar
  10. 10.
    Olivé, A.: Conceptual schema-centric development: A grand challenge for information systems research. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 1–15. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
  12. 12.
    OMG: Architecture Driven Modernization (ADM)
  13. 13.
    Mazón, J.N., Trujillo, J., Serrano, M., Piattini, M.: Applying MDA to the development of data warehouses. In: 8th Int. Workshop on Data Warehousing and OLAP, DOLAP, pp. 57–66 (2005)Google Scholar
  14. 14.
    Mazón, J.N., Pardillo, J., Trujillo, J.: Applying transformations to model driven data warehouses. In: DaWaK 2006. LNCS, vol. 4081, pp. 13–22. Springer, Heidelberg (2006)Google Scholar
  15. 15.
    Mazón, J.N., Trujillo, J.: An MDA approach for the development of data warehouses. Decision Support Systems (doi:10.1016 /j.dss.2006.12.003)Google Scholar
  16. 16.
    Böhnlein, M., vom Ende, A.U.: Deriving initial data warehouse structures from the conceptual data models of the underlying operational information systems. In: 2nd Int. Workshop on Data Warehousing and OLAP, DOLAP, pp. 15–21 (1999)Google Scholar
  17. 17.
    Moody, D.L., Kortink, M.A.R.: From enterprise models to dimensional models: a methodology for data warehouse and data mart design. In: 2nd Int. Workshop on Design and Management of Data Warehouses, DMDW (2000)Google Scholar
  18. 18.
    Phipps, C., Davis, K.C.: Automating data warehouse conceptual schema design and evaluation. In: 4th Int. Workshop on Design and Management of Data Warehouses, DMDW 2000, pp. 23–32 (2000)Google Scholar
  19. 19.
    Alhajj, R.: Extracting the extended entity-relationship model from a legacy relational database. Inf. Syst. 28(6), 597–618 (2003)CrossRefzbMATHGoogle Scholar
  20. 20.
    Jensen, M.R., Holmgren, T., Pedersen, T.B.: Discovering multidimensional structure in relational data. In: Kambayashi, Y., Mohania, M.K., Wöß, W. (eds.) DaWaK 2004. LNCS, vol. 3181, pp. 138–148. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    van den Heuvel, W.J.: Matching and adaptation: Core techniques for MDA-(ADM)-driven integration of new business applications with wrapped legacy systems. Workshop on Model-Driven Evolution of Legacy Systems  (2004)Google Scholar
  22. 22.
    OMG: MOF 2.0 Query/View/Transformation,,-11-01
  23. 23.
    OMG: Common Warehouse Metamodel Specification 1.1,
  24. 24.
    Soutou, C.: Relational database reverse engineering: Algorithms to extract cardinality constraints. Data Knowl. Eng. 28(2), 161–207 (1998)CrossRefzbMATHGoogle Scholar
  25. 25.
    OMG: Unified Modeling Language Specification 2.0,
  26. 26.
    Luján-Mora, S., Trujillo, J., Song, I.Y.: A UML profile for multidimensional modeling in data warehouses. Data Knowl. Eng. 59(3), 725–769 (2006)CrossRefGoogle Scholar
  27. 27.
    Hick, J.M., Hainaut, J.L.: Strategy for database application evolution: The DB-MAIN approach. In: Song, I.-Y., Liddle, S.W., Ling, T.-W., Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813, pp. 291–306. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Jose-Norberto Mazón
    • 1
  • Juan Trujillo
    • 1
  1. 1.Dept. of Software and Computing Systems, University of AlicanteSpain

Personalised recommendations