Advertisement

Handling Inconsistency of Vague Relations with Functional Dependencies

  • An Lu
  • Wilfred Ng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4801)

Abstract

Vague information is common in many database applications due to internet-scale data dissemination, such as those data arising from sensor networks and mobile communications. We have formalized the notion of a vague relation in order to model vague data in our previous work. In this paper, we utilize Functional Dependencies (FDs), which are the most fundamental integrity constraints that arise in practice in relational databases, to maintain the consistency of a vague relation. The problem we tackle is, given a vague relation r over a schema R and a set of FDs F over R, what is the “best” approximation of r with respect to F when taking into account of the median membership (m) and the imprecision membership (i) thresholds. Using these two thresholds of a vague set, we define the notion of mi-overlap between vague sets and a merge operation on r. Satisfaction of an FD in r is defined in terms of values being mi-overlapping. We show that Lien’s and Atzeni’s axiom system is sound and complete for FDs being satisfied in vague relations. We study the chase procedure for a vague relation r over R, named VChase(r, F), as a means to maintain consistency of r with respect to F. Our main result is that the output of the procedure is the most object-precise approximation of r with respect to F. The complexity of VChase(r, F) is polynomial time in the sizes of r and F.

Keywords

Partial Order Relational Database Functional Dependency Transitive Closure Vague Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Gau, W.-L., Buehrer, D.J.: Vague sets. IEEE Transactions on Systems, Man, and Cybernetics 23, 610–614 (1993)CrossRefzbMATHGoogle Scholar
  3. 3.
    Lu, A., Ng, W.: Vague sets or intuitionistic fuzzy sets for handling vague data: Which one is better? In: Delcambre, L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, Ó. (eds.) ER 2005. LNCS, vol. 3716, pp. 401–416. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Atzeni, P., Antonellis, V.D.: Relational Database Theory. Benjamin/Cummings (1993)Google Scholar
  5. 5.
    Lien, Y.E.: On the equivalence of database models. J. ACM 29, 333–362 (1982)CrossRefzbMATHGoogle Scholar
  6. 6.
    Lu, A., Ng, W.: Managing merged data by vague functional dependencies. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER 2004. LNCS, vol. 3288, pp. 259–272. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Lu, A., Ng, W.: Mining hesitation information by vague association rules. In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 39–55. Springer, Heidelberg (2007)Google Scholar
  8. 8.
    Bra, P.D., Paredaens, J.: Horizontal decompositions for handling exceptions to functional dependencies. In: Advances in Data Base Theory, pp. 123–141 (1982)Google Scholar
  9. 9.
    Kivinen, J., Mannila, H.: Approximate inference of functional dependencies from relations. Theor. Comput. Sci. 149, 129–149 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Huhtala, Y., Kärkkäinen, J., Porkka, P., Toivonen, H.: Tane: An efficient algorithm for discovering functional and approximate dependencies. Comput. J. 42, 100–111 (1999)CrossRefzbMATHGoogle Scholar
  11. 11.
    King, R.S., Legendre, J.J.: Discovery of functional and approximate functional dependencies in relational databases. JAMDS 7, 49–59 (2003)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Barbar, D., Garcia-Molina, H., Porter, D.: The management of probabilistic data. IEEE Trans. Knowl. Data Eng. 4, 487–502 (1992)CrossRefGoogle Scholar
  13. 13.
    Dey, D., Sarkar, S.: A probabilistic relational model and algebra. ACM Trans. Database Syst. 21, 339–369 (1996)CrossRefGoogle Scholar
  14. 14.
    Ross, R., Subrahmanian, V.S., Grant, J.: Aggregate operators in probabilistic databases. J. ACM 52, 54–101 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lakshmanan, L.V.S., Leone, N., Ross, R., Subrahmanian, V.S.: Probview: A flexible probabilistic database system. ACM Trans. Database Syst. 22, 419–469 (1997)CrossRefGoogle Scholar
  16. 16.
    Bosc, P., Prade, H.: An introduction to the fuzzy set and possibility theory-based treatment of flexible queries and uncertain or imprecise databases. In: Motro, A., Smets, P. (eds.) Uncertainty Management in Information Systems: From Needs to Solutions, pp. 285–324. Kluwer Academic Publishers, Dordrecht (1996)Google Scholar
  17. 17.
    Dubois, D., Prade, H.: Possibility Theory: An Approach to Computerized Processing of Uncertainty. Plenum Press, New York (1988)CrossRefzbMATHGoogle Scholar
  18. 18.
    Dey, D., Sarkar, S.: Generalized normal forms for probabilistic relational data. IEEE Trans. Knowl. Data Eng. 14, 485–497 (2002)CrossRefGoogle Scholar
  19. 19.
    Raju, K.V.S.V.N., Majumdar, A.K.: Fuzzy functional dependencies and lossless join decomposition of fuzzy relational database systems. ACM Trans. Database Syst. 13, 129–166 (1988)CrossRefGoogle Scholar
  20. 20.
    Bosc, P., Dubois, D., Prade, H.: Fuzzy functional dependencies and redundancy elimination. JASIS 49, 217–235 (1998)CrossRefGoogle Scholar
  21. 21.
    Intan, R., Mukaidono, M.: Fuzzy functional dependency and its application to approximate data querying. In: Desai, B.C., Kiyoki, Y., Toyama, M. (eds.) IDEAS, pp. 47–54. IEEE Computer Society, Los Alamitos (2000)Google Scholar
  22. 22.
    Brown, P., Haas, P.J.: Bhunt: Automatic discovery of fuzzy algebraic constraints in relational data. In: Aberer, K., Koubarakis, M., Kalogeraki, V. (eds.) Databases, Information Systems, and Peer-to-Peer Computing. LNCS, vol. 2944, pp. 668–679. Springer, Heidelberg (2004)Google Scholar
  23. 23.
    Levene, M.: Maintaining consistency of imprecise relations. Comput. J. 39, 114–123 (1996)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • An Lu
    • 1
  • Wilfred Ng
    • 1
  1. 1.Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong KongChina

Personalised recommendations