Advertisement

Relational Data Tailoring Through View Composition

  • Cristiana Bolchini
  • Elisa Quintarelli
  • Rosalba Rossato
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4801)

Abstract

This paper presents a methodology to derive views over a relational database by applying a sequence of appropriately defined operations to the global schema. Such tailoring and composition process aims at offering personalized views over the database schema, so as to improve its ability to support the new needs of customers, support evolutionary software development, and fix existing legacy database design problems. The process is driven by the designer’s knowledge of the possible operational contexts, in terms of the various dimensions that contribute to determine which portions of the global schema are relevant with respect to the different actors and situations. We formally introduce some operators, defined on sets of relations, which tailor the schema and combine the intermediate views to derive different final views, suitable for the different envisioned situations. The application to a case study is also presented, to better clarify the proposed approach.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abiteboul, S.: On Views and XML. In: Proc. 18th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, pp. 1–9. ACM Press, New York (1999)Google Scholar
  2. 2.
    Bolchini, C., Curino, C., Quintarelli, E., Schreiber, F.A., Tanca, L.: Context information for knowledge reshaping. Int. Journal on Web Engineering and Technology (to appear 2007)Google Scholar
  3. 3.
    Bolchini, C., Curino, C.A., Orsi, G., Quintarelli, E., Schreiber, F.A., Tanca, L.: CADD: a tool for context modeling and data tailoring. In: Proc. IEEE/ACM Int. Conf. on Mobile Data Management - Demo Session, May 7-11, ACM Press, New York (2007)Google Scholar
  4. 4.
    Bolchini, C., Quintarelli, E.: Filtering mobile data by means of context: a methodology. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006. LNCS, vol. 4278, pp. 1986–1995. Springer, Heidelberg (2006)Google Scholar
  5. 5.
    Bolchini, C., Quintarelli, E.: Filtering mobile data by means of context: a methodology. In: Proc. 2nd Int. Workshop on Context Representation and Reasoning, pp. 13–18 (2006)Google Scholar
  6. 6.
    Bolchini, C., Schreiber, F.A., Tanca, L.: A methodology for very small database design. Information Systems 32(1), 61–82 (2007)CrossRefGoogle Scholar
  7. 7.
    Cluet, S., Veltri, P., Vodislav, D.: Views in a large scale of XML repository. In: Proc. 27th Int. Conf. on Very Large Data Bases, pp. 271–289 (2001)Google Scholar
  8. 8.
    Elmasri, R., Navathe, S.: Fundamentals of database systems, 4th edn. Pearson/Addison Wesley (2004)Google Scholar
  9. 9.
    Ghidini, C., Giunchiglia, F.: Local Models Semantics, or contextual reasoning=locality+compatibility. Artificial Intellicence 127(2), 221–259 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Liefke, H., Davidson, S.B.: View maintenance for hierarchical semistructured data. In: Kambayashi, Y., Mohania, M.K., Tjoa, A.M. (eds.) DaWaK 2000. LNCS, vol. 1874, pp. 114–125. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Madhavan, J., Halevy, A.Y.: Composing mappings among data sources. In: Aberer, K., Koubarakis, M., Kalogeraki, V. (eds.) Databases, Information Systems, and Peer-to-Peer Computing. LNCS, vol. 2944, pp. 572–583. Springer, Heidelberg (2004)Google Scholar
  12. 12.
    McGuinness, D.L., van Harmelen, F.: OWL Web Ontology Language Overview, W3C Recommendation (2004)Google Scholar
  13. 13.
    Rajugan, R., Chang, E., Dillon, T.S.: Ontology views: A theoretical perspective. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006. LNCS, vol. 4278, pp. 1814–1824. Springer, Heidelberg (2006)Google Scholar
  14. 14.
    Rajugan, R., Dillon, T.S., Chang, E., Feng, L.: A Layered View Model for XML Repositories and XML Data Warehouses. In: Proc. IEEE 5th Int. Conf. on Computer and Information Technology, pp. 206–215. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  15. 15.
    Roussos, Y., Stavrakas, Y., Pavlaki, V.: Towards a context-aware relational model. In: Proc. Context Representation and Reasoning - CRR’05, pp. 7.1–7.12 (2005)Google Scholar
  16. 16.
    Stefanidis, K., Pitoura, E., Vassiliadis, P.: Modeling and storing context-aware preferences. In: Manolopoulos, Y., Pokorný, J., Sellis, T. (eds.) ADBIS 2006. LNCS, vol. 4152, pp. 124–140. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Volz, R., Oberle, D., Studer, R.: Implementing views for light-weight web ontologies. In: Proc. IEEE 7th Int. Database Engineering and Applications Symp., pp. 160–169. IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  18. 18.
    Volz, R., Oberle, D., Studer, R., Staab, S.: Views for light-weight web ontologies. In: Proc. ACM Symp. on Applied Computing, pp. 1168–1173. ACM Press, New York (2003)Google Scholar
  19. 19.
    Wouters, C., Rajugan, R., Dillon, T.S., Rahayu, J.W.R.: Ontology extraction using views for semantic web. In: Web Semantics and Ontology, pp. 1–40. Idea Group Pub., USA (2005)Google Scholar
  20. 20.
    Zhuge, Y., Garcia-Molina, H.: Graph structured views and their incremental maintenance. In: Proc. IEEE 14th Int. Conf. on Data Engineering, pp. 116–125. IEEE Computer Society Press, Los Alamitos (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Cristiana Bolchini
    • 1
  • Elisa Quintarelli
    • 1
  • Rosalba Rossato
    • 1
  1. 1.Dipartimento di Elettronica e Informazione – Politecnico di Milano, Piazza Leonardo da Vinci, 32 – 20133 MilanoItaly

Personalised recommendations