Abstract
In formal approaches, messages sent over a network are usually modeled by terms together with an equational theory, axiomatizing the properties of the cryptographic functions (encryption, exclusive or, ...). The analysis of cryptographic protocols requires a precise understanding of the attacker knowledge. Two standard notions are usually used: deducibility and indistinguishability. Only few results have been obtained (in an ad-hoc way) for equational theories with associative and commutative properties, especially in the case of static equivalence. The main contribution of this paper is to propose a general setting for solving deducibility and indistinguishability for an important class (called monoidal) of these theories. Our setting relies on the correspondence between a monoidal theory E and a semiring \(\mathcal{S}_\mathsf{E}\) which allows us to give an algebraic characterization of the deducibility and indistinguishability problems. As a consequence we recover easily existing decidability results and obtain several new ones.
This work has been partly supported by the RNTL project POSÉ and the ARA SSIA Formacrypt.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Abadi, M., Cortier, V.: Deciding knowledge in security protocols under equational theories. Theoretical Computer Science 387(1-2), 2–32 (2006)
Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In: POPL 2001. Proc. 28th ACM Symposium on Principles of Programming Languages, London (UK), pp. 104–115. ACM Press, New York (2001)
Arnaud, M., Cortier, V., Delaune, S.: Combining algorithms for deciding knowledge in security protocols. In: Konev, B., Wolter, F. (eds.) FroCoS 2007. LNCS (LNAI), vol. 4720, pp. 103–117. Springer, Heidelberg (2007)
Baader, F.: Unification in commutative theories, Hilbert’s basis theorem, and Gröbner bases. Journal of the ACM 40(3), 477–503 (1993)
Baader, F., Nutt, W.: Combination problems for commutative/ monoidal theories or How algebra can help in equational unification. Applicable Algebra Engineering Communication and Computing 7(4), 309–337 (1996)
Baudet, M., Cortier, V., Kremer, S.: Computationally sound implementations of equational theories against passive adversaries. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 652–663. Springer, Heidelberg (2005)
Chevalier, Y., Küsters, R., Rusinowitch, M., Turuani, M.: Deciding the security of protocols with Diffie-Hellman exponentiation and product in exponents. In: Pandya, P.K., Radhakrishnan, J. (eds.) FST TCS 2003. LNCS, vol. 2914, pp. 124–135. Springer, Heidelberg (2003)
Chevalier, Y., Küsters, R., Rusinowitch, M., Turuani, M.: An NP decision procedure for protocol insecurity with XOR. In: LICS 2003. Proc. 18th IEEE Symposium on Logic in Computer Science, Ottawa (Canada), pp. 261–270. IEEE Computer Society Press, Los Alamitos (2003)
Chevalier, Y., Rusinowitch, M.: Combining intruder theories. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 639–651. Springer, Heidelberg (2005)
Comon-Lundh, H., Shmatikov, V.: Intruder deductions, constraint solving and insecurity decision in presence of exclusive or. In: LICS 2003. Proc. 18th IEEE Symposium on Logic in Computer Science, Ottawa (Canada), pp. 271–280. IEEE Computer Society Press, Los Alamitos (2003)
Delaune, S.: Easy intruder deduction problems with homomorphisms. Information Processing Letters 97(6), 213–218 (2006)
Delaune, S., Lafourcade, P., Lugiez, D., Treinen, R.: Symbolic protocol analysis for monoidal equational theories. Information and Computation (to appear)
Lafourcade, P., Lugiez, D., Treinen, R.: Intruder deduction for AC-like equational theories with homomorphisms. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 308–322. Springer, Heidelberg (2005)
Lafourcade, P., Lugiez, D., Treinen, R.: ACUNh: Unification and disunification using automata theory. In: UNIF 2006. Proc. 20th Int. Workshop on Unification, Seattle (Washington, USA), pp. 6–20 (2006)
Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, Springer, Heidelberg (1996)
Millen, J., Shmatikov, V.: Constraint solving for bounded-process cryptographic protocol analysis. In: CCS 2001. Proc. 8th ACM Conference on Computer and Communications Security, ACM Press, New York (2001)
Nutt, W.: Unification in monoidal theories. In: Stickel, M.E. (ed.) 10th International Conference on Automated Deduction. LNCS, vol. 449, pp. 618–632. Springer, Heidelberg (1990)
Paulson, L.C.: The inductive approach to verifying cryptographic protocols. Journal of Computer Security 6(1-2), 85–128 (1998)
Rusinowitch, M., Turuani, M.: Protocol insecurity with a finite number of sessions, composed keys is NP-complete. Theoretical Computer Science 299(1-3), 451–475 (2003)
Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cortier, V., Delaune, S. (2007). Deciding Knowledge in Security Protocols for Monoidal Equational Theories. In: Dershowitz, N., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2007. Lecture Notes in Computer Science(), vol 4790. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75560-9_16
Download citation
DOI: https://doi.org/10.1007/978-3-540-75560-9_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-75558-6
Online ISBN: 978-3-540-75560-9
eBook Packages: Computer ScienceComputer Science (R0)
