Skip to main content

Deciding Knowledge in Security Protocols for Monoidal Equational Theories

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 4790)

Abstract

In formal approaches, messages sent over a network are usually modeled by terms together with an equational theory, axiomatizing the properties of the cryptographic functions (encryption, exclusive or, ...). The analysis of cryptographic protocols requires a precise understanding of the attacker knowledge. Two standard notions are usually used: deducibility and indistinguishability. Only few results have been obtained (in an ad-hoc way) for equational theories with associative and commutative properties, especially in the case of static equivalence. The main contribution of this paper is to propose a general setting for solving deducibility and indistinguishability for an important class (called monoidal) of these theories. Our setting relies on the correspondence between a monoidal theory E and a semiring \(\mathcal{S}_\mathsf{E}\) which allows us to give an algebraic characterization of the deducibility and indistinguishability problems. As a consequence we recover easily existing decidability results and obtain several new ones.

This work has been partly supported by the RNTL project POSÉ and the ARA SSIA Formacrypt.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abadi, M., Cortier, V.: Deciding knowledge in security protocols under equational theories. Theoretical Computer Science 387(1-2), 2–32 (2006)

    CrossRef  MathSciNet  Google Scholar 

  2. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In: POPL 2001. Proc. 28th ACM Symposium on Principles of Programming Languages, London (UK), pp. 104–115. ACM Press, New York (2001)

    CrossRef  Google Scholar 

  3. Arnaud, M., Cortier, V., Delaune, S.: Combining algorithms for deciding knowledge in security protocols. In: Konev, B., Wolter, F. (eds.) FroCoS 2007. LNCS (LNAI), vol. 4720, pp. 103–117. Springer, Heidelberg (2007)

    Google Scholar 

  4. Baader, F.: Unification in commutative theories, Hilbert’s basis theorem, and Gröbner bases. Journal of the ACM 40(3), 477–503 (1993)

    CrossRef  MATH  MathSciNet  Google Scholar 

  5. Baader, F., Nutt, W.: Combination problems for commutative/ monoidal theories or How algebra can help in equational unification. Applicable Algebra Engineering Communication and Computing 7(4), 309–337 (1996)

    CrossRef  MATH  MathSciNet  Google Scholar 

  6. Baudet, M., Cortier, V., Kremer, S.: Computationally sound implementations of equational theories against passive adversaries. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 652–663. Springer, Heidelberg (2005)

    Google Scholar 

  7. Chevalier, Y., Küsters, R., Rusinowitch, M., Turuani, M.: Deciding the security of protocols with Diffie-Hellman exponentiation and product in exponents. In: Pandya, P.K., Radhakrishnan, J. (eds.) FST TCS 2003. LNCS, vol. 2914, pp. 124–135. Springer, Heidelberg (2003)

    Google Scholar 

  8. Chevalier, Y., Küsters, R., Rusinowitch, M., Turuani, M.: An NP decision procedure for protocol insecurity with XOR. In: LICS 2003. Proc. 18th IEEE Symposium on Logic in Computer Science, Ottawa (Canada), pp. 261–270. IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

  9. Chevalier, Y., Rusinowitch, M.: Combining intruder theories. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 639–651. Springer, Heidelberg (2005)

    Google Scholar 

  10. Comon-Lundh, H., Shmatikov, V.: Intruder deductions, constraint solving and insecurity decision in presence of exclusive or. In: LICS 2003. Proc. 18th IEEE Symposium on Logic in Computer Science, Ottawa (Canada), pp. 271–280. IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

  11. Delaune, S.: Easy intruder deduction problems with homomorphisms. Information Processing Letters 97(6), 213–218 (2006)

    CrossRef  MathSciNet  Google Scholar 

  12. Delaune, S., Lafourcade, P., Lugiez, D., Treinen, R.: Symbolic protocol analysis for monoidal equational theories. Information and Computation (to appear)

    Google Scholar 

  13. Lafourcade, P., Lugiez, D., Treinen, R.: Intruder deduction for AC-like equational theories with homomorphisms. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 308–322. Springer, Heidelberg (2005)

    Google Scholar 

  14. Lafourcade, P., Lugiez, D., Treinen, R.: ACUNh: Unification and disunification using automata theory. In: UNIF 2006. Proc. 20th Int. Workshop on Unification, Seattle (Washington, USA), pp. 6–20 (2006)

    Google Scholar 

  15. Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, Springer, Heidelberg (1996)

    Google Scholar 

  16. Millen, J., Shmatikov, V.: Constraint solving for bounded-process cryptographic protocol analysis. In: CCS 2001. Proc. 8th ACM Conference on Computer and Communications Security, ACM Press, New York (2001)

    Google Scholar 

  17. Nutt, W.: Unification in monoidal theories. In: Stickel, M.E. (ed.) 10th International Conference on Automated Deduction. LNCS, vol. 449, pp. 618–632. Springer, Heidelberg (1990)

    Google Scholar 

  18. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. Journal of Computer Security 6(1-2), 85–128 (1998)

    Google Scholar 

  19. Rusinowitch, M., Turuani, M.: Protocol insecurity with a finite number of sessions, composed keys is NP-complete. Theoretical Computer Science 299(1-3), 451–475 (2003)

    CrossRef  MATH  MathSciNet  Google Scholar 

  20. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cortier, V., Delaune, S. (2007). Deciding Knowledge in Security Protocols for Monoidal Equational Theories. In: Dershowitz, N., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2007. Lecture Notes in Computer Science(), vol 4790. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75560-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75560-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75558-6

  • Online ISBN: 978-3-540-75560-9

  • eBook Packages: Computer ScienceComputer Science (R0)