Skip to main content

Stimulus-Response Curves in Sensory Neurons: How to Find the Stimulus Measurable with the Highest Precision

  • Conference paper
Advances in Brain, Vision, and Artificial Intelligence (BVAI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4729))

Included in the following conference series:

  • 1527 Accesses

Abstract

To study sensory neurons, the neuron response is plotted versus stimulus level. The aim of the present contribution is to determine how well two different levels of the incoming stimulation can be distinguished on the basis of their evoked responses. Two generic models of response function are presented and studied under the influence of noise. We show in these noisy cases that the most suitable signal, from the point of view of its identification, is not unique. To obtain the best identification we propose to use measures based on Fisher information. For these measures, we show that the most identifiable signal may differ from that derived when the noise is neglected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amari, S., Nakahara, H.: Difficulty of singularity in population coding. Neural Comput. 17, 839–858 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bethge, M., Rotermund, D., Pawelzik, K.: Optimal short-term population coding: When Fisher information fails. Neural Comput. 14, 2317–2351 (2002)

    Article  MATH  Google Scholar 

  3. Brunel, N., Nadal, J.-P.: Mutual information, Fisher information, and population coding. Neural Comput. 10, 1731–1757 (1998)

    Article  Google Scholar 

  4. Cramer, H.: Mathematical Methods of Statistics. Princeton University Press, Princeton (1946)

    MATH  Google Scholar 

  5. Dayan, P., Abbott, L.F.: Theoretical neuroscience. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  6. Freund, J.A., Schimansky-Geier, L., Beisner, B., et al.: Behavioral stochastic resonance: How the noise from a Daphnia swarm enhances individual prey capture by juvenile paddlefish. J. Theor. Biol. 214, 71–83 (2002)

    Article  Google Scholar 

  7. Getz, W.M., Lansky, P.: Ligand concentration coding and optimal Michaelis-Menten parameters in multivalent and heterogeneous receptor membranes. Chemical Senses 26, 95–104 (2001)

    Article  Google Scholar 

  8. Gerstner, W., Kistler, W.: Spiking neuron models. Cambridge Univ. Press, Cambridge (2002)

    MATH  Google Scholar 

  9. Green, D.M., Swets, J.A.: Signal detection theory and psychophysics. Wiley, New York (1966)

    Google Scholar 

  10. Greenwood, P.E., Ward, L.M., Wefelmeyer, W.: Statistical analysis of stochastic resonance in a simple setting. Phys. Rev. E, Part B 60, 4687–4695 (1999)

    Article  Google Scholar 

  11. Greenwood, P.E., Ward, L.M., Russel, D.F., Neiman, A., Moss, F.: Stochastic resonance enhances the electrosensory information available to paddlefish for prey capture. Phys. Rev. Lett. 84, 4773–4776 (2000)

    Article  Google Scholar 

  12. Greenwood, P.E., Lansky, P.: Optimum signal in a simple neuronal model with signal-dependent noise. Biol. Cybern. 92, 199–205 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Greenwood, P.E., Lansky, P.: Information content in threshold data with non-Gaussian noise. Fluct. Noise Letters, L79–L89 (2007)

    Google Scholar 

  14. Krivan, V., Lansky, P., Rospars, J.-P.: Coding of periodic pulse stimulations in chemoreceptors. BioSystems 67, 121–128 (2002)

    Article  Google Scholar 

  15. Jenison, R.L.: Decoding first-spike latency: A likelihood approach. Neurocomput. 38, 239–248 (2001)

    Article  Google Scholar 

  16. Johnson, D.H., Ray, W.: Optimal stimulus coding by neural populations using rate codes. J. Comput. Neurosci. 16, 129–138 (2004)

    Article  Google Scholar 

  17. Lam, H.S., Lampard, D.G.: Modeling of drug receptor interaction with birth and death processes. J. Math. Biol. 12, 153–172 (1981)

    MATH  MathSciNet  Google Scholar 

  18. Lansky, P., Getz, W.M.: Sensitivity and coding range in olfactory sensory neuron. Role of heterogeneity of receptors. Bull. Math. Biol. 63, 885–908 (2001)

    Article  Google Scholar 

  19. Lansky, P., Greenwood, P.E.: Optimal signal estimation in neuronal models. Neural Comput. 17, 2240–2257 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lansky, P., Greenwood, P.E.: Optimal signal in sensory neurons under extended rate coding concept. BioSystems 89, 10–15 (2007)

    Article  Google Scholar 

  21. Lansky, P., Rodriguez, R., Sacerdote, L.: Mean instantaneous firing frequency is always higher than the firing rate. Neural Comput. 16, 477–489 (2004)

    Article  Google Scholar 

  22. Lansky, P., Rospars, J.-P.: Coding of odor intensity. BioSystems 31, 15–38 (1993)

    Article  Google Scholar 

  23. Lansky, P., Sacerdote, L., Zucca, L.: Optimum signal in a diffusion leaky integrate-and-fire neuronal model. Math. Biosci. 207, 261–274 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. McKeegan, D.E.F.: Spontaneous and odour evoked activity in single avian olfactory bulb neurones. Brain Res. 929, 48–58 (2002)

    Article  Google Scholar 

  25. Nizami, L.: Estimating auditory neuronal dynamic range using a fitted function. Hearing Res. 167, 13–27 (2002)

    Article  Google Scholar 

  26. Rospars, J.-P., Lansky, P., Duchamp-Viret, P., Duchamp, A.: Spiking frequency vs. odorant concentration in olfactory receptor neurons. BioSystems 58, 133–141 (2000)

    Article  Google Scholar 

  27. Rospars, J.-P., Krivan, V., Lansky, P.: Perireceptor and receptor events in olfaction. Comparison of concentration and flux detectors: a modeling study. Chemical Senses 25, 293–311 (2000)

    Article  Google Scholar 

  28. Rospars, J.-P., Lansky, P., Duchamp-Viret, P., Duchamp, A.: Relation between stimulus intensity and response in frog olfactory receptor neurons in vivo. European J. Neurosci. 18, 1135–1154 (2003)

    Article  Google Scholar 

  29. Stemmler, M.: A single spike suffices: the simplest form of stochastic resonance in model neurons. Network 7, 687–716 (1996)

    Article  MATH  Google Scholar 

  30. Wiener, M.C., Richmond, B.J.: Decoding spike trains instant by instant using order statistics and the mixture-of-Poisson model. J. Neurosci. 23, 2394–2406 (2003)

    Google Scholar 

  31. Wilke, S.D., Eurich, C.W.: Representational accuracy of stochastic neural populations. Neural Comput. 14, 155–189 (2002)

    Article  MATH  Google Scholar 

  32. Wu, S., Amari, S., Nakahara, H.: Information processing in a neuron ensemble with the multiplicative correlation structure. Neural Networks 17, 205–214 (2004)

    Article  MATH  Google Scholar 

  33. Zhang, K.C., Sejnowski, T.J.: Neuronal tuning: To sharpen or broaden? Neural Comput. 11, 75–84 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francesco Mele Giuliana Ramella Silvia Santillo Francesco Ventriglia

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lansky, P., Pokora, O., Rospars, JP. (2007). Stimulus-Response Curves in Sensory Neurons: How to Find the Stimulus Measurable with the Highest Precision. In: Mele, F., Ramella, G., Santillo, S., Ventriglia, F. (eds) Advances in Brain, Vision, and Artificial Intelligence. BVAI 2007. Lecture Notes in Computer Science, vol 4729. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75555-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75555-5_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75554-8

  • Online ISBN: 978-3-540-75555-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics