Abstract
Face recognition is among the most challenging techniques for personal identity verification. Even though it is so natural for humans, there are still many hidden mechanisms which are still to be discovered. According to the most recent neurophysiological studies, the use of dynamic information is extremely important for humans in visual perception of biological forms and motion. Moreover, motion processing is also involved in the selection of the most informative areas of the face and consequently directing the attention. This paper provides an overview and some new insights on the use of dynamic visual information for face recognition, both for exploiting the temporal information and to define the most relevant areas to be analyzed on the face. In this context, both physical and behavioral features emerge in the face representation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Knight, B., Johnston, A.: The role of movement in face recognition. Visual Cognition 4, 265–274 (1997)
Yamaguchi, O., Fukui, K., Maeda, K.: Face recognition using temporal image sequence. In: Proc. Int. Conf. on Automatic Face and Gesture Recognition (1998)
Biuk, Z., Loncaric, S.: Face recognition from multi-pose image sequence. In: Proc. of Int. Symp. on Image and Signal Processing and Analysis (2001)
Li, Y.: Dynamic face models: construction and applications. PhD thesis, Queen Mary, University of London (2001)
Shakhnarovich, G., Fisher, J.W., Darrell, T.: Face recognition from long-term observations. In: Proc. of European Conf. on Computer Vision (2002)
Zhou, S., Krueger, V., Chellappa, R.: Probabilistic recognition of human faces from video. Computer Vision and Image Understanding 91, 214–245 (2003)
Liu, X., Chen, T.: Video-based face recognition using adaptive hidden markov models. In: Proc. Int. Conf. on Computer Vision and Pattern Recognition (2003)
Lee, K.C., Ho, J., Yang, M.H., Kriegman, D.: Video-based face recognition using probabilistic appearance manifolds. In: Proc. Int. Conf. on Computer Vision and Pattern Recognition (2003)
Hadid, A., Pietikäinen, M.: An experimental investigation about the integration of facial dynamics in video-based face recognition. Electronic Letters on Computer Vision and Image Analysis 5(1), 1–13 (2005)
Vaina, L.M., Solomon, J., Chowdhury, S., Sinha, P., Belliveau, J.W.: Functional Neuroanatomy of Biological Motion Perception in Humans. Proc. of the National Academy of Sciences of the United States of America 98(20), 11656–11661 (2001)
OToole, A.J., Roark, D.A., Abdi, H.: Recognizing moving faces: A psychological and neural synthesis. Trends in Cognitive Science 6, 261–266 (2002)
Darwin, C.: The expression of the emotions in man and animals. John Murray, London, UK (1965) (original work published 1872)
Goren, C., Sarty, M., Wu, P.: Visual following and pattern discrimination of face-like stimuli by newborn infants. Pediatrics 56, 544–549 (1975)
Walton, G.E., Bower, T.G.R.: Newborns form “prototypes” in less than 1 minute. Psychological Science 4, 203–205 (1993)
Fagan, J.: Infants’ recognition memory for face. Journal of Experimental Child Psychology 14, 453–476 (1972)
de Haan, M., Nelson, C.A.: Recognition of the mother’s face by 6-month-old infants: A neurobehavioral study. Child Development 68, 187–210 (1997)
Ballard, D.H.: Animate vision. Artificial Intelligence 48, 57–86 (1991)
Aloimonos, Y.: Purposize, qualitative, active vision. CVGIP: Image Understanding 56(special issue on qualitative, active vision), 3–129 (1992)
Tistarelli, M.: Active/space-variant object recognition. Image and Vision Computing 13(3), 215–226 (1995)
Schwartz, E.L., Greve, D.N., Bonmassar, G.: Space-variant active vision: definition, overview and examples. Neural Networks 8(7/8), 1297–1308 (1995)
Curcio, C.A., Sloan, K.R., Kalina, R.E., Hendrickson, A.E.: Human photoreceptor topography. Journal of Computational Neurology 292(4), 497–523 (1990)
Sandini, G., Metta, G.: Retina- like sensors: motivations, technology and applications. In: Secomb, T.W., Barth, F., Humphrey, P. (eds.) Sensors and Sensing in Biology and Engineering, Springer, Heidelberg (2002)
Burt, P.J.: Smart sensing in machine vision. In: Machine Vision: Algorithms, Architectures, and Systems, Academic Press, London (1988)
Tong, F., Li, Z.N.: The reciprocal-wedge transform for space-variant sensing. In: 4th IEEE Intl. Conference on Computer Vision, Berlin, pp. 330–334. IEEE Computer Society Press, Los Alamitos (1993)
Schwartz, E.L.: Spatial mapping in the primate sensory projection: Analytic structure and relevance to perception. Biological Cybernetics 25, 181–194 (1977)
Fisher, T.E., Juday, R.D.: A programmable video image remapper. In: Proceedings of SPIE, vol. 938, pp. 122–128 (1988)
Grosso, E., Tistarelli, M.: Log-polar Stereo for Anthropomorphic Robots. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 299–313. Springer, Heidelberg (2000)
Yarbus, A.L.: Eye Movements and Vision. Plenum Press, New York (1967)
Yeshurun, Y., Schwartz, E.L.: Shape description with a space-variant sensor: Algorithms for scan-path, fusion and convergence over multiple scans. IEEE Trans. on PAMI PAMI-11, 1217–1222 (1993)
Shepherd, J.: Social factors in face recognition. In: Davies, G., Ellis, H., Shepherd, J. (eds.) Perceiving and remembering face, pp. 55–79. Academic Press, London (1981)
Nahm, F.K.D., Perret, A., Amaral, D., Albright, T.D.: How do monkeys look at faces? Journal of Cognitive Neuroscience 9, 611–623 (1997)
Haith, M.M., Bergman, T., Moore, M.J.: Eye contact and face scanning in early infancy. Science 198, 853–854 (1979)
Klin, A.: Eye-tracking of social stimuli in adults with autism. In: NICHD Collaborative Program of Excellence in Autism, May 2001, Yale University, New Haven, CT (2001)
Tistarelli, M., Grosso, E.: Active vision-based face authentication. Image and Vision Computing: Special issue on Facial Image Analysis 18(4), 299–314 (2000)
Bicego, M., Grosso, E., Tistarelli, M.: On finding differences between faces. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 329–338. Springer, Heidelberg (2005)
Wiskott, L., Fellous, J.M., der Malsburg, C.V.: Face recognition by elastic bunch graph matching. IEEE Trans. on Pattern Analysis and Machine Intelligence 19, 775–779 (1997)
Tsotsos, J., Culhane, S., Wai, W., Lai, Y., Davis, N., Nuflo, F.: Modelling visual attention via selective tuning. Artificial Intelligence 78, 507–545 (1995)
Lindeberg, T.: Detecting salient blob-like image structures and their scales with a scale-space primal sketch: A method for focus-of-attention. Int. Journal of Computer Vision 11(3), 283–318 (1993)
Koch, C., Ullman, S.: Shifts in selective visual-attention - towards the underlying neural circuitry. Human Neurobiology 4, 219–227 (1985)
Salah, A., Alpaydın, E., Akarun, L.: A selective attention-based method for visual pattern recognition with application to handwritten digit recognition and face recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(3), 420–425 (2002)
González-Jiménez, D., Alba-Castro, J.: Biometrics discriminative face recognition through Gabor responses and sketch distortion. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3523, pp. 513–520. Springer, Heidelberg (2005)
Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. Journal of Computer Vision 60(2), 91–110 (2004)
Penev, P., Atick, J.: Local feature analysis: a general statistical theory for object representation. Network: computation in Neural Systems 7(3), 477–500 (1996)
Li, S., Hou, X., Zhang, H.: Learning spatially localized, parts-based representation. Computer Vision and Image Understanding 1, 207–212 (2001)
Kim, J., Choi, J., Yi, J., Turk, M.: Effective representation using ica for face recognition robust to local distortion and partial occlusion. IEEE Trans. on Pattern Analysis and Machine Intelligence 27(12), 1977–1981 (2005)
Ullman, S., Vidal-Naquet, M., Sali, E.: Visual features of intermediate complexity and their use in classification. Nature Neuroscience 5, 682–687 (2002)
Agarwal, S., Roth, D.: Learning a sparse representation for object detection. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 113–130. Springer, Heidelberg (2002)
Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: Proc. Int. Conf. on Computer Vision and Pattern Recognition, vol. 2, p. 264 (2003)
Dorko, G., Schmid, C.: Selection of scale-invariant parts for object class recognition. In: Proc. Int. Conf. on Computer Vision, vol. 2, pp. 634–640 (2003)
Csurka, G., Dance, C., Bray, C., Fan, L., Willamowski, J.: Visual categorization with bags of keypoints. In: Proc. Workshop Pattern Recognition and Machine Learning in Computer Vision (2004)
Jojic, N., Frey, B., Kannan, A.: Epitomic analysis of appearance and shape. In: Proc. Int. Conf. on Computer Vision, vol. 2, pp. 34–41 (2003)
Haxby, J.V., Hoffman, E.A., Gobbini, M.I.: The distributed human neural system for face perception. Trends in Cognitive Sciences 4(6), 223–233 (2000)
Wiskott, L., Fellous, J.M., Kruger, N., von der Malsburg, C.: Face recognition and gender determination. In: Proceedings Int.l Workshop on Automatic Face and Gesture Recognition, Zurich, Switzerland, pp. 92–97 (1995)
Wechsler, H., Phillips, P., Bruce, V., Soulie, F., Huang, T. (eds.): Face Recognition. From Theory to Applications. NATO ASI Series F, vol. 163. Springer, Heidelberg
Cottrell, G., Metcalfe, J.: Face, gender and emotion recognition using holons. In: Touretzky, D. (ed.) Advances in Neural Information Processing Systems, San Mateo, CA, vol. 3, pp. 564–571. Morgan Kaufmann, San Francisco (1991)
Braathen, B., Bartlett, M.S., Littlewort, G., Movellan, J.R.: First Steps Towards Automatic Recognition of Spontaneous Facial Action Units. In: ACM Workshop on Perceptive User Interfaces, Orlando, FL, November 15-16, 2001, ACM Press, New York (2001)
Picard, R.W.: Toward computers that recognize and respond to user emotion. IBM System (39), 3/4 (2000)
Picard, R.W.: Building HAL: Computers that sense, recognize, and respond to human emotion. MIT Media-Lab TR-532, also in Society of Photo-Optical Instrumentation Engineers. Human Vision and Electronic Imaging VI, part of SPIE9s Photonics West (2001)
Bicego, M., Grosso, E., Tistarelli, M.: Person authentication from video of faces: a behavioral and physiological approach using Pseudo Hierarchical Hidden Markov Models. In: Zhang, D., Jain, A.K. (eds.) Advances in Biometrics. LNCS, vol. 3832, pp. 113–120. Springer, Heidelberg (2005)
Rabiner, L.: A tutorial on Hidden Markov Models and selected applications in speech recognition. Proc. of IEEE 77(2), 257–286 (1989)
Kohir, V.V., Desai, U.B.: Face recognition using DCT-HMM approach. In: AFIART. Proc. Workshop on Advances in Facial Image Analysis and Recogniti Technology, Freiburg, Germany (1998)
Samaria, F.: Face recognition using Hidden Markov Models. PhD thesis, Engineering Department, Cambridge University (October 1994)
Nefian, A.V., Hayes, M.H.: Hidden Markov models for face recognition. In: ICASSP. Proc. Int. Conf. on Acoustics, Speech and Signal Processing, Seattle, pp. 2721–2724 (1998)
Bicego, M., Castellani, U., Murino, V.: Using Hidden Markov Models and wavelets for face recognition. In: IEEE. Proc. of Int. Conf on Image Analysis and Processing, pp. 52–56. IEEE Computer Society Press, Los Alamitos (2003)
Bicego, M., Grosso, E., Tistarelli, M.: Probabilistic face authentication using hidden markov models. In: Proc. of SPIE Int. Workshop on Biometric Technology for Human Identification (2005)
Schwarz, G.: Estimating the dimension of a model. The Annals of Statistics 6(2), 461–464 (1978)
Fine, S., Singer, Y., Tishby, N.: The hierarchical hidden markov model: Analysis and applications. Machine Learning 32, 41–62 (1998)
Smyth, P.: Clustering sequences with hidden Markov models. In: Mozer, M., Jordan, M., Petsche, T. (eds.) Advances in Neural Information Processing Systems, vol. 9, p. 648. MIT Press, Cambridge (1997)
Panuccio, A., Bicego, M., Murino, V.: A Hidden Markov model-based approach to sequential data clustering. In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SPR 2002 and SSPR 2002. LNCS, vol. 2396, pp. 734–742. Springer, Heidelberg (2002)
Rabiner, L., Lee, C., Juang, B., Wilpon, J.: HMM clustering for connected word recognition. In: ICASSP. Proc. Int. Conf. on Acoustics, Speech and Signal Processing, pp. 405–408 (1989)
Li, C.: A Bayesian Approach to Temporal Data Clustering using Hidden Markov Model Methodology. PhD thesis, Vanderbilt University (2000)
Jain, A.K., Dubes, R.: Algorithms for clustering data. Prentice-Hall, Englewood Cliffs (1988)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tistarelli, M., Brodo, L., Lagorio, A., Bicego, M. (2007). Recognition of Human Faces: From Biological to Artificial Vision. In: Mele, F., Ramella, G., Santillo, S., Ventriglia, F. (eds) Advances in Brain, Vision, and Artificial Intelligence. BVAI 2007. Lecture Notes in Computer Science, vol 4729. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75555-5_19
Download citation
DOI: https://doi.org/10.1007/978-3-540-75555-5_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-75554-8
Online ISBN: 978-3-540-75555-5
eBook Packages: Computer ScienceComputer Science (R0)