Advertisement

Automatic Strategy Verification for Hex

  • Ryan B. Hayward
  • Broderick Arneson
  • Philip Henderson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4630)

Abstract

We present a concise and/or-tree notation for describing Hex strategies together with an easily implemented algorithm for verifying strategy correctness. To illustrate our algorithm, we use it to verify Jing Yang’s 7×7 centre-opening strategy.

Keywords

Winning Strategy Restoration Process Combine Intersection Recursion Tree Automatic Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gardner, M.: Mathematical Games. Scientific American 197, July, pp. 145–150, August, pp. 120–127, October, pp. 130–138 (1957)Google Scholar
  2. 2.
    Gardner, M.: The Scientific American Book of Mathematical Puzzles and Diversions, pp. 73–83. Simon and Schuster, New York (1959)Google Scholar
  3. 3.
    Hayward, R.B., van Rijswijck, J.: Hex and Combinatorics (formerly Notes on Hex). Discrete Mathematics 306, 2515–2528 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Hayward, R.B., Björnsson, Y., Johanson, M., Kan, M., Po, N., van Rijswijck, J.: Solving 7×7 Hex: Virtual Connections and Game-state Reduction. In: van den Herik, H.J., Iida, H., Heinz, E.A. (eds.) Advances in Computer Games (ACG10), Many Games, Many Challenges, pp. 261–278. Kluwer Academic Publishers, Boston (2004)Google Scholar
  5. 5.
    Hayward, R.B., Björnsson, Y., Johanson, M., Kan, M., Po, N., van Rijswijck, J.: Solving 7×7 Hex with Domination, Fill-in, and Virtual Connections. Theoretical Computer Science 349, 123–139 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Maarup, Th.: Hex – Everything You Always Wanted to Know About Hex but Were Afraid to Ask. Master’s thesis, Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark (2005)Google Scholar
  7. 7.
    Maarup, Th.: Hex Webpage (2005), http://maarup.net/thomas/hex/
  8. 8.
    Nasar, S.: A Beautiful Mind. Touchstone, New York (1998)zbMATHGoogle Scholar
  9. 9.
    Nash, J.: Some Games and Machines for Playing Them. Technical Report D-1164, Rand Corp. (1952)Google Scholar
  10. 10.
    Noshita, K.: Union-Connections and Straightforward Winning Strategies in Hex. ICGA Journal 28(1), 3–12 (2005)Google Scholar
  11. 11.
    Reisch, S.: Hex ist PSPACE-vollständig. Acta Informatica 15, 167–191 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Yang, J.: Jing Yang’s Web Site (2003), http://www.ee.umanitoba.ca/~jingyang
  13. 13.
    Yang, J., Liao, S., Pawlak, M.: A Decomposition Method for Finding Solution in Game Hex 7x7. In: International Conference on Application and Development of Computer Games in the 21st Century, pp. 96–111 (November 2001)Google Scholar
  14. 14.
    Yang, J., Liao, S., Pawlak, M.: On a Decomposition Method for Finding Winning Strategy in Hex Game (2001), http://www.ee.umanitoba.ca/~jingyang/hexsol.pdf
  15. 15.
    Yang, J., Liao, S., Pawlak, M.: Another Solution for Hex 7x7. Technical report, University of Manitoba, Winnipeg, Canada (2002), http://www.ee.umanitoba.ca/~jingyang/TR.pdf
  16. 16.
    Yang, J., Liao, S., Pawlak, M.: New Winning and Losing Positions for 7x7 Hex. In: Schaeffer, J., Müller, M., Björnsson, Y. (eds.) CG 2002. LNCS, vol. 2883, pp. 230–248. Springer, Heidelberg (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Ryan B. Hayward
    • 1
  • Broderick Arneson
    • 1
  • Philip Henderson
    • 1
  1. 1.Department of Computing Science, University of Alberta, EdmontonCanada

Personalised recommendations