Abstract
Protein structure analysis is one of the most important research issues in the post-genomic era, and faster and more accurate index data structures for such 3-D structures are highly desired for research on proteins. The geometric suffix tree is a very sophisticated index structure that enables fast and accurate search on protein 3-D structures. By using it, we can search from 3-D structure databases for all the substructures whose RMSDs (root mean square deviations) to a given query 3-D structure are not larger than a given bound. In this paper, we propose a new data structure based on the geometric suffix tree whose query performance is much better than the original geometric suffix tree. We call the modified data structure the prefix-shuffled geometric suffix tree (or PSGST for short). According to our experiments, the PSGST outperforms the geometric suffix tree in most cases. The PSGST shows its best performance when the database does not have many substructures similar to the query. The query is sometimes 100 times faster than the original geometric suffix trees in such cases.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-D point sets. IEEE Trans Pattern Anal. Machine Intell. 9, 698–700 (1987)
Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucl. Acids Res. 28, 235–242 (2000)
Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)
Eggert, D.W., Lorusso, A., Fisher, R.B.: Estimating 3-D rigid body transformations: a comparison of four major algorithms. Machine Vision and Applications 9, 272–290 (1997)
Eidhammer, I., Jonassen, I., Taylor, W.R.: Structure Comparison and Structure Patterns. J. Computational Biology 7(5), 685–716 (2000)
Farach, M.: Optimal suffix tree construction with large alphabets. In: Proc. 38th IEEE Symp. Foundations of Computer Science, pp. 137–143. IEEE Computer Society Press, Los Alamitos (1997)
Golub, G.H., Van Loan, C.F.: Matrix Computation, 3rd edn. John Hopkins University Press (1996)
Gusfield, D.: Algorithms on strings, trees, and sequences: computer science and computational biology. Cambridge University Press, Cambridge (1997)
Matsumoto, M., Nishimura, T.: A nonempirical test on the weight of pseudorandom number generators. In: Fang, K.T., et al. (eds.) Monte Carrlo and Quasi-Monte Carlo Methods 2000, pp. 381–395. Springer, Heidelberg (2002)
McCreight, E.M.: A space-economical suffix tree construction algorithm. J. ACM. 23, 262–272 (1976)
Schwartz, J.T., Sharir, M.: Identification of partially obscured objects in two and three dimensions by matching noisy characteristic curves. Intl. J. of Robotics Res. 6, 29–44 (1987)
Shibuya, T.: Geometric Suffix Tree: A New Index Structure for Protein 3-D Structures. In: Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp. 84–93. Springer, Heidelberg (2006)
Ukkonen, E.: On-line construction of suffix-trees. Algorithmica 14, 249–260 (1995)
Weiner, P.: Linear pattern matching algorithms. In: Proc. 14th Symposium on Switching and Automata Theory, pp. 1–11 (1973)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Shibuya, T. (2007). Prefix-Shuffled Geometric Suffix Tree. In: Ziviani, N., Baeza-Yates, R. (eds) String Processing and Information Retrieval. SPIRE 2007. Lecture Notes in Computer Science, vol 4726. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75530-2_27
Download citation
DOI: https://doi.org/10.1007/978-3-540-75530-2_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-75529-6
Online ISBN: 978-3-540-75530-2
eBook Packages: Computer ScienceComputer Science (R0)