Skip to main content

Improvement Strategies for the F-Race Algorithm: Sampling Design and Iterative Refinement

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 4771)

Abstract

Finding appropriate values for the parameters of an algorithm is a challenging, important, and time consuming task. While typically parameters are tuned by hand, recent studies have shown that automatic tuning procedures can effectively handle this task and often find better parameter settings. F-Race has been proposed specifically for this purpose and it has proven to be very effective in a number of cases. F-Race is a racing algorithm that starts by considering a number of candidate parameter settings and eliminates inferior ones as soon as enough statistical evidence arises against them. In this paper, we propose two modifications to the usual way of applying F-Race that on the one hand, make it suitable for tuning tasks with a very large number of initial candidate parameter settings and, on the other hand, allow a significant reduction of the number of function evaluations without any major loss in solution quality. We evaluate the proposed modifications on a number of stochastic local search algorithms and we show their effectiveness.

Keywords

  • Local Search
  • Traveling Salesman Problem
  • Full Factorial Design
  • Mesh Adaptive Direct Search
  • Reference Cost

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-75514-2_9
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-75514-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adenso-Diaz, B., Laguna, M.: Fine-tuning of algorithms using fractional experimental designs and local search. Operations Research 54(1), 99–114 (2006)

    CrossRef  Google Scholar 

  2. Barr, R., Golden, B., Kelly, J., Rescende, M., Stewart, W.: Designing and reporting on computational experiments with heuristic methods. Journal of Heuristics 1(1), 9–32 (1995)

    MATH  CrossRef  Google Scholar 

  3. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In: Langdon, W.B. (ed.) Proceedings of the Genetic and Evolutionary Computation Conference, pp. 11–18. Morgan Kaufmann, San Francisco, CA, USA (2002)

    Google Scholar 

  4. Birattari, M.: The Problem of Tuning Metaheuristics as Seen from a Machine Learning Perspective. PhD thesis, Université Libre de Bruxelles, Brussels, Belgium (2004)

    Google Scholar 

  5. Becker, S., Gottlieb, J., Stützle, T.: Applications of racing algorithms: An industrial perspective. In: Talbi, E.-G., Liardet, P., Collet, P., Lutton, E., Schoenauer, M. (eds.) EA 2005. LNCS, vol. 3871, pp. 271–283. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  6. Chiarandini, M., Birattari, M., Socha, K., Rossi-Doria, O.: An effective hybrid algorithm for university course timetabling. Journal of Scheduling 9(5), 403–432 (2006)

    MATH  CrossRef  MathSciNet  Google Scholar 

  7. Pellegrini, P., Birattari, M.: The relevance of tuning the parameters of metaheuristics. A case study: The vehicle routing problem with stochastic demand. Technical Report TR/IRIDIA/2006-008, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium (2006)

    Google Scholar 

  8. Zlochin, M., Birattari, M., Meuleau, N., Dorigo, M.: Model-based search for combinatorial optimization: A critical survey. Annals of Operations Research 131, 373–395 (2004)

    MATH  CrossRef  MathSciNet  Google Scholar 

  9. Maron, O., Moore, A.: Hoeffding races: Accelerating model selection search for classification and function approximation. In: Cowan, J.D., Tesauro, G., Alspector, J. (eds.) NIPS, vol. 6, pp. 59–66. Morgan Kaufmann, San Francisco, CA, USA (1994)

    Google Scholar 

  10. Moore, A., Lee, M.: Efficient algorithms for minimizing cross validation error. In: Proceedings of the Eleventh International Conference on Machine Learning, pp. 190–198. Morgan Kaufmann, San Francisco, CA, USA (1994)

    Google Scholar 

  11. Conover, W.J.: Practical Nonparametric Statistics, 3rd edn. John Wiley & Sons, New York,USA (1999)

    Google Scholar 

  12. Hoos, H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Morgan Kaufmann, San Francisco, CA, USA (2005)

    MATH  Google Scholar 

  13. Stützle, T., Hoos, H.: \(\cal MAX\)\(\cal MIN\) Ant System. Future Generation Computer System 16(8), 889–914 (2000)

    CrossRef  Google Scholar 

  14. Birattari, M., Balaprakash, P., Stützle, T., Dorigo, M.: Estimation-based local search for stochastic combinatorial optimization. Technical Report TR/IRIDIA/2007-003, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium (2007)

    Google Scholar 

  15. Birattari, M.: The race package for R. Racing methods for the selection of the best. Technical Report TR/IRIDIA/2003-37, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium (2003), Package available at: http://cran.r-project.org/src/contrib/Descriptions/race.html

  16. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge, MA (2004)

    MATH  Google Scholar 

  17. Johnson, D.S., McGeoch, L.A., Rego, C., Glover, F.: 8th DIMACS implementation challenge (2001)

    Google Scholar 

  18. Kohavi, R., John, G.: Automatic parameter selection by minimizing estimated error. In: Prieditis, A., Russell, S. (eds.) Proceedings of the Twelfth International Conference on Machine Learning, pp. 304–312 (1995)

    Google Scholar 

  19. Boyan, J., Moore, A.: Using prediction to improve combinatorial optimization search. In: Sixth International Workshop on Artificial Intelligence and Statistics (1997)

    Google Scholar 

  20. Audet, C., Orban, D.: Finding optimal algorithmic parameters using the mesh adaptive direct search algorithm. SIAM Journal on Optimization 17(3), 642–664 (2006)

    MATH  CrossRef  MathSciNet  Google Scholar 

  21. Beielstein, T., Parsopoulos, K., Vrahatis, M.: Tuning PSO parameters through sensitivity analysis. Technical report, Collaborative Research Center 531 Computational Intelligence CI–124/02 (2002)

    Google Scholar 

  22. Hutter, F., Hoos, H., Stützle, T.: Automatic algorithm configuration based on local search. In: AAAI-2007, AAAI Press, Menlo Park, CA, USA (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Balaprakash, P., Birattari, M., Stützle, T. (2007). Improvement Strategies for the F-Race Algorithm: Sampling Design and Iterative Refinement. In: , et al. Hybrid Metaheuristics. HM 2007. Lecture Notes in Computer Science, vol 4771. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75514-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75514-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75513-5

  • Online ISBN: 978-3-540-75514-2

  • eBook Packages: Computer ScienceComputer Science (R0)