Skip to main content

Hybrid Numerical Optimization for Combinatorial Network Problems

  • Conference paper
  • 687 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 4771)

Abstract

We discuss a general approach to hybridize traditional construction heuristics for combinatorial optimization problems with numerical based evolutionary algorithms. Therefore, we show how to augment a construction heuristic with real-valued parameters, called control values. An evolutionary algorithm for numerical optimization uses this enhanced heuristic to find assignments for these control values, which in turn enable the latter to find high quality solutions for the original combinatorial problem. Additionally to the actual optimization task, we thereby experimentally analyze the heuristic’s substeps.

Furthermore, after finding a good assignment for a specific instance set, we can use it for similar yet different problem instances, without the need of an additional time-consuming run of the evolutionary algorithm. This concept is of particular interest in the context of computing efficient bounds within Branch-and-Cut algorithms. We apply our approach to a real-world problem in network optimization, and present a study on its effectiveness.

Keywords

  • Evolutionary Algorithm
  • Problem Instance
  • Hybrid Algorithm
  • Construction Heuristic
  • Mutation Strength

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-75514-2_14
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-75514-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, D.V., Beyer, H.-G.: A comparison of evolution strategies with other direct search methods in the presence of noise. Computational Optimization and Applications 24(1), 135–159 (2003)

    MATH  CrossRef  MathSciNet  Google Scholar 

  2. Beyer, H.-G., Schwefel, H.-P.: Evolution strategies—A comprehensive introduction. Natural Computing 1, 3–52 (2002)

    MATH  CrossRef  MathSciNet  Google Scholar 

  3. Chimani, M., Kandyba, M., Mutzel, P.: A new ILP formulation for a 2-connected prize collecting steiner network problem. In: Proc. ESA 2007 (to appear, 2007)

    Google Scholar 

  4. de Jong, K.: Evolutionary Computation: A Unified Approach. MIT Press, Cambridge, MA (2006)

    MATH  Google Scholar 

  5. Emmerich, M., Grötzner, M., Groß, B., Schütz, M.: Mixed-integer evolution strategy for chemical plant optimization with simulators. In: Evolutionary Design and Manufacture – Sel. papers ACDM 2000, pp. 55–67. Springer, Heidelberg (2000)

    Google Scholar 

  6. Mehlhorn, K.: A faster approximation for the steiner problem in graphs. Information Processing Letters 27, 125–128 (1988)

    MATH  CrossRef  MathSciNet  Google Scholar 

  7. Talbi, E.-G.: A taxonomy of hybrid metaheuristics. J. Heuristics 8(5), 541–564 (2002)

    CrossRef  Google Scholar 

  8. Wagner, D., Raidl, G.R., Pferschy, U., Mutzel, P., Bachhiesl, P.: A multi-commodity flow approach for the design of the last mile in real-world fiber optic networks. In: Proc. GOR 2006, Springer, Heidelberg (2006)

    Google Scholar 

  9. Wagner, D., Raidl, G.R., Pferschy, U., Mutzel, P., Bachhiesl, P.: A Directed Cut for the Design of the Last Mile in Real-World Fiber Optic Networks. In: Proc. INOC 2007, pp. 103/1–6 (2007)

    Google Scholar 

  10. Wolsey, L.A.: Integer Programming. Wiley-Interscience, Chichester (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chimani, M., Kandyba, M., Preuss, M. (2007). Hybrid Numerical Optimization for Combinatorial Network Problems. In: , et al. Hybrid Metaheuristics. HM 2007. Lecture Notes in Computer Science, vol 4771. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75514-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75514-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75513-5

  • Online ISBN: 978-3-540-75514-2

  • eBook Packages: Computer ScienceComputer Science (R0)