Skip to main content

Using Branch & Bound Concepts in Construction-Based Metaheuristics: Exploiting the Dual Problem Knowledge

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 4771)

Abstract

In recent years it has been shown by means of practical applications that the incorporation of branch & bound concepts within construction-based metaheuristics can be very useful. In this paper, we attempt to give an explanation of why this type of hybridization works. First, we introduce the concepts of primal and dual problem knowledge, and we show that metaheuristics only exploit the primal problem knowledge. In contrast, hybrid metaheuristic that include branch & bound concepts exploit both the primal and the dual problem knowledge. After giving a survey of these techniques, we conclude the paper with an application example that concerns the longest common subsequence problem.

Keywords

  • Search Tree
  • Target Node
  • Greedy Randomize Adaptive Search Procedure
  • Beam Search
  • Longe Common Subsequence

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Christian Blum acknowledges support from the Spanish CICYT project OPLINK (grant TIN-2005-08818-C04-01), and from the Ramón y Cajal program of the Spanish Ministry of Science and Technology of which he is a research fellow. Monaldo Mastrolilli acknowledges support from the Swiss National Science Foundation project 200021-104017/1, Power Aware Computing, and by the Swiss National Science Foundation project 200021-100539/1, Approximation Algorithms for Machine scheduling Through Theory and Experiments.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-75514-2_10
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-75514-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aho, A., Hopcroft, J., Ullman, J.: Data structures and algorithms. Addison-Wesley, Reading (1983)

    MATH  Google Scholar 

  2. Blum, C.: Beam-ACO–hybridizing ant colony optimization with beam search: an application to open shop scheduling. Computers and Operations Research 32, 1565–1591 (2005)

    CrossRef  Google Scholar 

  3. Blum, C., Bautista, J., Pereira, J.: Beam-ACO applied to assembly line balancing. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) ANTS 2002. LNCS, vol. 2463, pp. 14–27. Springer, Heidelberg (2002)

    Google Scholar 

  4. Blum, C., Cotta, C., Fernández, A.J., Gallardo, J.E.: A probabilistic beam search algorithm for the shortest common supersequence problem. In: Cotta, C., van Hemert, J.I. (eds.) EvoCOP 2007. LNCS, vol. 4446, pp. 36–47. Springer, Berlin (2007)

    Google Scholar 

  5. Blum, C., Dorigo, M.: The hyper-cube framework for ant colony optimization. IEEE Transactions on Systems, Man, and Cybernetics – Part B 34(2), 1161–1172 (2004)

    CrossRef  Google Scholar 

  6. Dorigo, M., Stuetzle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)

    MATH  Google Scholar 

  7. Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. Journal of Global Optimization 6, 109–133 (1995)

    MATH  CrossRef  MathSciNet  Google Scholar 

  8. Fraser, C.B.: Subsequences and supersequences of strings. PhD thesis, University of Glasgow (1995)

    Google Scholar 

  9. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. In: Computer Science and Computational Biology, Cambridge University Press, Cambridge (1997)

    Google Scholar 

  10. Huang, K., Yang, C., Tseng, K.: Fast algorithms for finding the common subsequences of multiple sequences. In: Proceedings of the International Computer Symposium, pp. 1006–1011. IEEE Computer Society Press, Los Alamitos (2004)

    Google Scholar 

  11. Maier, D.: The complexity of some problems on subsequences and supersequences. Journal of the ACM 25, 322–336 (1978)

    MATH  CrossRef  MathSciNet  Google Scholar 

  12. Maniezzo, V.: Exact and Approximate Nondeterministic Tree-Search Procedures for the Quadratic Assignment Problem. INFORMS Journal on Computing 11(4), 358–369 (1999)

    MATH  MathSciNet  CrossRef  Google Scholar 

  13. Maniezzo, V., Carbonaro, A.: An ANTS heuristic for the frequency assignment problem. Future Generation Computer Systems 16, 927–935 (2000)

    CrossRef  Google Scholar 

  14. Maniezzo, V., Milandri, M.: An ant-based framework for very strongly constrained problems. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) Ant Algorithms. LNCS, vol. 2463, pp. 222–227. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  15. Ow, P.S., Morton, T.E.: Filtered beam search in scheduling. International Journal of Production Research 26, 297–307 (1988)

    CrossRef  Google Scholar 

  16. Smith, T., Waterman, M.: Identification of common molecular subsequences. Journal of Molecular Biology 147(1), 195–197 (1981)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blum, C., Mastrolilli, M. (2007). Using Branch & Bound Concepts in Construction-Based Metaheuristics: Exploiting the Dual Problem Knowledge. In: , et al. Hybrid Metaheuristics. HM 2007. Lecture Notes in Computer Science, vol 4771. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75514-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75514-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75513-5

  • Online ISBN: 978-3-540-75514-2

  • eBook Packages: Computer ScienceComputer Science (R0)