Balter, M.: Seeking the key to music. Science 306, 1120–1122 (2004)
CrossRef
Google Scholar
Barlow, H.B., Kaushal, T.P., Mitchison, G.J.: Finding minimum entropy codes. Neural Computation 1(3), 412–423 (1989)
Google Scholar
Huffman, D.A.: A method for construction of minimum-redundancy codes. In: Proceedings IRE, vol. 40, pp. 1098–1101 (1952)
Google Scholar
Hutter, M.: Universal Artificial Intelligence: Sequential Decisions based on Algorithmic Probability. Springer, Heidelberg (2004) (On J. Schmidhuber’s SNF grant 20-61847)
Google Scholar
Hutter, M.: On universal prediction and Bayesian confirmation. Theoretical Computer Science (2007)
Google Scholar
Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. Journal of AI research 4, 237–285 (1996)
Google Scholar
Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Problems of Information Transmission 1, 1–11 (1965)
Google Scholar
Levin, L.A.: Universal sequential search problems. Problems of Information Transmission 9(3), 265–266 (1973)
Google Scholar
Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and its Applications, 2nd edn. Springer, Heidelberg (1997)
MATH
Google Scholar
Pinker, S.: How the mind works (1997)
Google Scholar
Schmidhuber, J.: Adaptive curiosity and adaptive confidence. Technical Report FKI-149-91, Institut für Informatik, Technische Universität München (April 1991) See also [12]
Google Scholar
Schmidhuber, J.: Curious model-building control systems. In: Proceedings of the International Joint Conference on Neural Networks, vol. 2, pp. 1458–1463. IEEE, Los Alamitos (1991)
CrossRef
Google Scholar
Schmidhuber, J.: Learning complex, extended sequences using the principle of history compression. Neural Computation 4(2), 234–242 (1992)
CrossRef
Google Scholar
Schmidhuber, J.: Learning factorial codes by predictability minimization. Neural Computation 4(6), 863–879 (1992)
Google Scholar
Schmidhuber, J.: Low-complexity art. Leonardo, Journal of the International Society for the Arts, Sciences, and Technology 30(2), 97–103 (1997)
Google Scholar
Schmidhuber, J.: What’s interesting? Technical Report IDSIA-35-97, IDSIA, (1997), ftp://ftp.idsia.ch/pub/juergen/interest.ps.gz (extended abstract in Proc. Snowbird 1998, Utah (1998) see also [16])
Google Scholar
Schmidhuber, J.: Facial beauty and fractal geometry. Technical Report TR IDSIA-28-98, IDSIA (1998) Published in the Cogprint Archive,
http://cogprints.soton.ac.uk
Schmidhuber, J.: Exploring the predictable. In: Ghosh, A., Tsuitsui, S. (eds.) Advances in Evolutionary Computing, pp. 579–612. Springer, Heidelberg (2002)
Google Scholar
Schmidhuber, J.: Hierarchies of generalized Kolmogorov complexities and nonenumerable universal measures computable in the limit. International Journal of Foundations of Computer Science 13(4), 587–612 (2002)
MATH
CrossRef
MathSciNet
Google Scholar
Schmidhuber, J.: The Speed Prior: a new simplicity measure yielding near-optimal computable predictions. In: Kivinen, J., Sloan, R.H. (eds.) COLT 2002. LNCS (LNAI), vol. 2375, pp. 216–228. Springer, Heidelberg (2002)
Google Scholar
Schmidhuber, J.: Gödel machines: self-referential universal problem solvers making provably optimal self-improvements. Technical Report IDSIA-19-03, arXiv:cs.LO/0309048, IDSIA, Manno-Lugano, Switzerland (2003)
Google Scholar
Schmidhuber, J.: Optimal ordered problem solver. Machine Learning 54, 211–254 (2004)
MATH
CrossRef
Google Scholar
Schmidhuber, J.: Overview of artificial curiosity and active exploration, with links to publications since 1990 (2004),
http://www.idsia.ch/~juergen/interest.html
Schmidhuber, J.: Completely self-referential optimal reinforcement learners. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 223–233. Springer, Heidelberg (2005)
Google Scholar
Schmidhuber, J.: Gödel machines: Towards a technical justification of consciousness. In: Kudenko, D., Kazakov, D., Alonso, E. (eds.) Adaptive Agents and Multi-Agent Systems III. LNCS (LNAI), vol. 3394, pp. 1–23. Springer, Heidelberg (2005)
Google Scholar
Schmidhuber, J.: Developmental robotics, optimal artificial curiosity, creativity, music, and the fine arts. Connection Science 18(2), 173–187 (2006)
CrossRef
Google Scholar
Schmidhuber, J.: Gödel machines: fully self-referential optimal universal problem solvers. In: Goertzel, B., Pennachin, C. (eds.) Artificial General Intelligence, pp. 199–226. Springer, Heidelberg (2006)
Google Scholar
Schmidhuber, J., Heil, S.: Sequential neural text compression. IEEE Transactions on Neural Networks 7(1), 142–146 (1996)
CrossRef
Google Scholar
Schmidhuber, J., Huber, R.: Learning to generate artificial fovea trajectories for target detection. International Journal of Neural Systems 2(1 & 2), 135–141 (1991)
CrossRef
Google Scholar
Shannon, C.E.: A mathematical theory of communication (parts I and II). Bell System Technical Journal XXVII, 379–423 (1948)
MathSciNet
Google Scholar
Solomonoff, R.J.: A formal theory of inductive inference. Part I. Information and Control 7, 1–22 (1964)
CrossRef
MathSciNet
MATH
Google Scholar
Solomonoff, R.J.: Complexity-based induction systems. IEEE Transactions on Information Theory IT-24(5), 422–432 (1978)
CrossRef
MathSciNet
Google Scholar
Storck, J., Hochreiter, S., Schmidhuber, J.: Reinforcement driven information acquisition in non-deterministic environments. In: Proceedings of the International Conference on Artificial Neural Networks, Paris, vol. 2, pp. 159–164. EC2 & Cie (1995)
Google Scholar