Symbolic Reachability Analysis of Lazy Linear Hybrid Automata

  • Susmit Jha
  • Bryan A. Brady
  • Sanjit A. Seshia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4763)

Abstract

Lazy linear hybrid automata (LLHA) model the discrete time behavior of control systems containing finite-precision sensors and actuators interacting with their environment under bounded inertial delays. In this paper, we present a symbolic technique for reachability analysis of lazy linear hybrid automata. The model permits invariants and guards to be nonlinear predicates but requires flow values to be constants. Assuming finite precision, flows represented by uniform linear predicates can be reduced to those containing values from a finite set of constants. We present an abstraction hierarchy for LLHA. Our verification technique is based on bounded model checking and k-induction for reachability analysis at different levels of the abstraction hierarchy within an abstraction-refinement framework. The counterexamples obtained during BMC are used to construct refinements in each iteration. Our technique is practical and compares favorably with state-of-the-art tools, as demonstrated on examples that include the Air Traffic Alert and Collision Avoidance System (TCAS).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, M., Stephan, F., Thiagarajan, P.S., Yang, S.: Behavioural approximations for restricted linear differential hybrid automata. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 4–18. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Agrawal, M., Thiagarajan, P.S.: Lazy rectangular hybrid automata. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 1–15. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Agrawal, M., Thiagarajan, P.S.: The discrete time behavior of lazy linear hybrid automata. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 55–69. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: An algorithmic approach to the specification and verification of hybrid systems. In: Grossman, R.L., Ravn, A.P., Rischel, H., Nerode, A. (eds.) Hybrid Systems. LNCS, vol. 736, pp. 209–229. Springer, Heidelberg (1992)Google Scholar
  5. 5.
    Bryant, R.E., Kroening, D., Ouaknine, J., Seshia, S.A., Strichman, O., Brady, B.: Deciding bit-vector arithmetic with abstraction. In: Proceedings of TACAS 2007. LNCS, vol. 4424, pp. 358–372. Springer, Heidelberg (2007)Google Scholar
  6. 6.
    Chan, W., Anderson, R., Beame, P., Notkin, D.: Combining constraint solving and symbolic model checking for a class of a systems with non-linear constraints. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 316–327. Springer, Heidelberg (1997)Google Scholar
  7. 7.
    Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Damm, W., Pinto, G., Ratschan, S.: Guaranteed termination in the verification of LTL properties of non-linear robust discrete time hybrid systems. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 99–113. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Deshpande, A., Godbole, D.N.A.G., Varaiya, P.: Design and evaluation tools for automated highway systems. In: Hybrid Systems, pp. 138–148 (1995)Google Scholar
  10. 10.
    Federal Aviation Administration. Introduction to TCAS II Version 7 (November 2000), http://www.arinc.com/downloads/tcas/tcas.pdf
  11. 11.
    Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech. In: HSCC, pp. 258–273 (2005)Google Scholar
  12. 12.
    Henzinger, T.A., Kopke, P.W.: Discrete-time control for rectangular hybrid automata. TCS 221(1-2), 369–392 (1999)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Ho, P.-H.: Automatic analysis of hybrid systems. PhD thesis, Cornell Univ. (1995)Google Scholar
  14. 14.
    Jha, S.K., Krogh, B.H., Weimer, J., Clarke, E.M.: Reachability for Linear Hybrid Automata Using Iterative Relaxation Abstraction. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 287–300. Springer, Heidelberg (2007)Google Scholar
  15. 15.
    Livadas, C., Lygeros, J., Lynch, N.A.: High-level modeling and analysis of tcas. In: RTSS 1999, p. 115. IEEE Computer Society Press, Washington, DC, USA (1999)Google Scholar
  16. 16.
    Pappas, G., Tomlin, C., Sastry, S.: Conflict resolution for multi-agent hybrid systems. In: CDC, pp. 1184–1189 (1996)Google Scholar
  17. 17.
    Potocnik, B., Bemporad, A., Torrisi, F., Music, G., Zupancic, B.: Hysdel Modeling and Simulation of Hybrid Dynamical Systems. In: MATHMOD Conference, Vienna, Austria (February 2003)Google Scholar
  18. 18.
    Ratschan, S., She, Z.: Constraints for continuous reachability in the verification of hybrid systems. In: Calmet, J., Ida, T., Wang, D. (eds.) AISC 2006. LNCS (LNAI), vol. 4120, pp. 196–210. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
  20. 20.
    Tiwari, A.: Approximate reachability for linear systems. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 514–525. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Tiwari, A., Khanna, G.: Series of abstractions for hybrid automata. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 465–478. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Susmit Jha
    • 1
  • Bryan A. Brady
    • 1
  • Sanjit A. Seshia
    • 1
  1. 1.EECS Department, UC Berkeley 

Personalised recommendations