Advertisement

Business Model and the Policy of Mapping Light Communication Grid-Based Workflow Within the SLA Context

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4782)

Abstract

In the business Grid environment, the business relationship between a customer and a service provider should be clearly defined. The responsibility of each partner can be stated in the so-called Service Level Agreement (SLA). In the context of SLA-based workflows, the business model is an important factor to determine its job-resource-mapping policy. However, this aspect has not been described fully in the literature. This paper presents the business model of a system handling SLA-based workflow within the business Grid computing environment. From this business model, the mapping policy of the broker is derived. The experiment results show the impact of business models on the efficiency of mapping policies.

Keywords

Service Provider Time Slot Business Model Service Level Agreement Grid Resource 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sahai, A., Machiraju, V., Sayal, M., Jin, L.J., Casati, F.: Automated sla monitoring for web services. In: Feridun, M., Kropf, P.G., Babin, G. (eds.) DSOM 2002. LNCS, vol. 2506, pp. 28–41. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Hovestadt, M.: Scheduling in hpc resource management systems:queuing vs. planning. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003. LNCS, vol. 2862, pp. 1–20. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Quan, D., Kao, O.: Mapping grid job flows to grid resources within sla context. In: Sloot, P.M.A., Hoekstra, A.G., Priol, T., Reinefeld, A., Bubak, M. (eds.) EGC 2005. LNCS, vol. 3470, pp. 1107–1116. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Quan, D., Kao, O.: On architecture for an sla-aware job flows in grid environments. Journal of Interconnection Networks, World scientific computing, 245–264 (2005)Google Scholar
  5. 5.
    Quan, D., Altmann, J.: Mapping Grid-based workflows with light communication, onto Grid resources within an SLA context. In: GSEM 2007 conference (submitted, 2007)Google Scholar
  6. 6.
    Quan, D.: Error recovery mechanism for grid-based workflow within sla context. Accepted by International Journal of High Performance Computing and Networking (IJHPCN) (2006)Google Scholar
  7. 7.
    Quan, D.: Mapping heavy communication workflows onto grid resources within sla context. In: Gerndt, M., Kranzlmüller, D. (eds.) HPCC 2006. LNCS, vol. 4208, pp. 727–736. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
  9. 9.
    McGough, S., Afzal, A., Darlington, J., Furmento, N., Mayer, A., Young, L.: Making the Grid Predictable through Reservations and Performance Modelling. The Computer Journal 48(3), 358–368 (2005)CrossRefGoogle Scholar
  10. 10.
    Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: QoS-Aware Middleware for Web Services Composition. IEEE Transactions on Software Engineering 30(5), 311–327 (2004)CrossRefGoogle Scholar
  11. 11.
    Brandic, I., Benkner, S., Engelbrecht, G., Schmidt, R.: QoS Support for Time-Critical Grid Workow Applications. In: Proceedings of e-Science 2005 (2005)Google Scholar
  12. 12.
    Yu, J., Buyya, R.: Scheduling Scientific Workflow Applications with Deadline and Budget Constraints using Genetic Algorithms, Scientific Programming Journal. IOS Press, Amsterdam, The Netherlands (2006)Google Scholar
  13. 13.
    Surridge, M., Taylor, S., De Roure, D., Zaluska, E.: Experiences with GRIA. In: Proc. 1st IEEE International Conference on e-Science and Grid Computing, IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  14. 14.
  15. 15.
    Hovestadt, M., Kao, O., Vo, K.: The First Step of Introducing Risk Management for Preprocessing SLAs. In: SCC 2006, pp. 36–43 (2006)Google Scholar
  16. 16.
    Garbacki, P., Biskupski, B., Bal, H.: Transparent fault tolerance for grid application. In: Sloot, P.M.A., Hoekstra, A.G., Priol, T., Reinefeld, A., Bubak, M. (eds.) EGC 2005. LNCS, vol. 3470, pp. 671–680. Springer, Heidelberg (2005)Google Scholar
  17. 17.
    Spooner, D.P., Jarvis, S.A., Cao, J., Saini, S., Nudd, G.R.: Local grid scheduling techniques using performance prediction. In: Local grid scheduling techniques using performance prediction, pp. 87–96. IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  18. 18.

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.International University of Bruchsal, Campus 3, 76646 BruchsalGermany
  2. 2.TEMEP, School of Engineering, Seoul National UniversitySouth-Korea

Personalised recommendations