Skip to main content

An Intellectual History of the Spatial Semantic Hierarchy

  • Chapter

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 38))

Abstract

The Spatial Semantic Hierarchy and its predecessor the TOUR model are theories of robot and human commonsense knowledge of large-scale space: the cognitive map. The focus of these theories is on how spatial knowledge is acquired from experience in the environment, and how it can be used effectively in spite of being incomplete and sometimes incorrect.

This essay is a personal reflection on the evolution of these ideas since their beginning early in 1973 while I was a graduate student at the MIT AI Lab. I attempt to describe how, and due to what influences, my understanding of commonsense knowledge of space has changed over the years since then.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basye, K., Dean, T., Kaelbling, L.P.: Learning dynamics: system identification for perceptually challenged agents. Artificial Intelligence 72, 139–171 (1995)

    Article  Google Scholar 

  2. Basye, K., Dean, T., Vitter, J.S.: Coping with uncertainty in map learning. Machine Learning 29(1), 65–88 (1997)

    Article  MATH  Google Scholar 

  3. Becker, J.D.: “Robot” computer problem solving system. Technical Report 2316, Bolt Beranek and Newman (September 1972)

    Google Scholar 

  4. Becker, J.D., Merriam, E.W.: “Robot” computer problem solving system. Technical Report 2792, Bolt Beranek and Newman (April 1974)

    Google Scholar 

  5. Beeson, P., Jong, N.K., Kuipers, B.: Towards autonomous topological place detection using the extended Voronoi graph. In: IEEE International Conference on Robotics and Automation, IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  6. Boulding, K.: The Image. University of Michigan Press, Ann Arbor (1956)

    Google Scholar 

  7. Crawford, J.M., Kuipers, B.J.: Toward a theory of access-limited logic for knowledge representation. In: Proc. 1st Int. Conf. on Principles of Knowledge Representation and Reasoning, Morgan Kaufmann, San Mateo, CA (1989)

    Google Scholar 

  8. Crawford, J.M., Kuipers, B.J.: Negation and proof by contradiction in access-limited logic. In: AAAI 1991. Proc. 9th National Conf. on Artificial Intelligence, AAAI/MIT Press (1991)

    Google Scholar 

  9. Downs, R.M., Stea, D.: Image and Environment. Aldine Publishing Company, Chicago (1973)

    Google Scholar 

  10. Dudek, G., Jenkin, M., Milios, E., Wilkes, D.: Robotic exploration as graph construction. IEEE Trans. on Robotics and Automation 7(6), 859–865 (1991)

    Article  Google Scholar 

  11. Fillmore, C.: The case for case. In: Bach, E., Harms, R.T. (eds.) Universals in Linguistic Theory, Holt, Rinehart and Winston, Chicago (1968)

    Google Scholar 

  12. Geisler, W.S.: Sequential ideal-observer analysis of visual discriminations. Psychological Review 96, 267–314 (1989)

    Article  Google Scholar 

  13. Hähnel, D., Thrun, S., Wegbreit, B., Burgard, W.: Towards lazy data association in SLAM. In: ISRR 2003. Proc. Int. Symp. on Robotics Research (2003)

    Google Scholar 

  14. Harnad, S.: The symbol grounding problem. Physica D 42, 335–346 (1990)

    Article  Google Scholar 

  15. Hayes, P.J.: In defence of logic. In: IJCAI 1977. Proc. 5th Int. Joint Conf. on Artificial Intelligence, pp. 559–565 (1977)

    Google Scholar 

  16. Kuipers, B.: Commonsense reasoning about causality: Deriving behavior from structure. Artificial Intelligence 24, 169–204 (1984)

    Article  Google Scholar 

  17. Kuipers, B.: Qualitative simulation. Artificial Intelligence 29, 289–338 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kuipers, B.: The Spatial Semantic Hierarchy. Artificial Intelligence 119, 191–233 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kuipers, B.: Why don’t I take military funding? (2003), http://www.cs.utexas.edu/users/kuipers/opinions/no-military-funding.html

  20. Kuipers, B., Beeson, P.: Bootstrap learning for place recognition. In: AAAI 2002. Proc. 18th National Conf. on Artificial Intelligence, pp. 174–180. AAAI/MIT Press (2002)

    Google Scholar 

  21. Kuipers, B., Beeson, P., Modayil, J., Provost, J.: Bootstrap learning of foundational representations. Connection Science 18(2), 145–158 (2006)

    Article  Google Scholar 

  22. Kuipers, B., Modayil, J., Beeson, P., MacMahon, M., Savelli, F.: Local metrical and global topological maps in the hybrid spatial semantic hierarchy. In: ICRA 2004. IEEE Int. Conf. on Robotics & Automation, IEEE Computer Society Press, Los Alamitos (2004)

    Google Scholar 

  23. Kuipers, B.J.: A frame for frames: representing knowledge for recognition. In: Bobrow, D.G., Collins, A. (eds.) Representation and Understanding, pp. 151–184. Academic Press, New York (1975)

    Google Scholar 

  24. Kuipers, B.J.: Representing Knowledge of Large-Scale Space. PhD thesis, Mathematics Department, Massachusetts Institute of Technology, Cambridge, MA (1977), http://www.cs.utexas.edu/users/qr/papers/Kuipers-PhD-77.html

  25. Kuipers, B.J.: Modeling spatial knowledge. Cognitive Science 2, 129–153 (1978)

    Article  Google Scholar 

  26. Kuipers, B.J.: Commonsense knowledge of space: learning from experience. In: IJCAI 1979. Proc. 6th Int. Joint Conf. on Artificial Intelligence, Tokyo, Japan, pp. 499–501 (August 1979)

    Google Scholar 

  27. Kuipers, B.J.: Modeling human knowledge of routes: Partial knowledge and individual variation. In: AAAI 1983. Proc. 3rd National Conf. on Artificial Intelligence, Los Altos, CA, Morgan Kaufmann, San Francisco (1983)

    Google Scholar 

  28. Kuipers, B.J.: The map-learning critter. Technical Report AI TR 85-17, University of Texas at Austin, Artificial Intelligence Laboratory, Austin, TX (1985)

    Google Scholar 

  29. Kuipers, B.J.: Qualitative Reasoning: Modeling and Simulation with Incomplete Knowledge. MIT Press, Cambridge, MA (1994)

    Google Scholar 

  30. Kuipers, B.J., Byun, Y.T.: A robust qualitative method for spatial learning in unknown environments. In: AAAI 1988. Proc. 7th National Conf. on Artificial Intelligence, Los Altos, CA, pp. 774–779. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  31. Kuipers, B.J., Byun, Y.-T.: A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations. Journal of Robotics and Autonomous Systems 8, 47–63 (1991)

    Article  Google Scholar 

  32. Kuipers, B.J., Kassirer, J.P.: Causal reasoning in medicine: analysis of a protocol. Cognitive Science 8, 363–385 (1984)

    Article  Google Scholar 

  33. Kuipers, B.J., Levitt, T.: Navigation and mapping in large scale space. AI Magazine 9(2), 25–43 (1988)

    Google Scholar 

  34. Lakoff, G., Johnson, M.: Metaphors We Live By. The University of Chicago Press, Chicago (1980)

    Google Scholar 

  35. Lifschitz, V.: Nested abnormality theories. Artificial Intelligence 74, 351–365 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  36. Linde, C., Labov, W.: Spatial networks as a site for the study of language and thought. Language 51, 924–939 (1975)

    Article  Google Scholar 

  37. Lynch, K.: The Image of the City. MIT Press, Cambridge, MA (1960)

    Google Scholar 

  38. MacMahon, M., Stankiewicz, B., Kuipers, B.: Walk the talk: connecting language, knowledge, and action in route instructions. In: AAAI 2006. National Conference on Artificial Intelligence, Boston (July 2006)

    Google Scholar 

  39. McCarthy, J.: Programs with common sense. In: Minsky, M.L. (ed.) Semantic Information Processing, pp. 403–418. MIT Press, Cambridge, MA (1968)

    Google Scholar 

  40. Miller, G.A., Galanter, E., Pribram, K.H.: Plans and the Structure of Behavior. Holt, Rinehart and Winston (1960)

    Google Scholar 

  41. Minsky, M.: A framework for representing knowledge. In: Winston, P.H. (ed.) The Psychology of Computer Vision, McGraw-Hill, NY (1975)

    Google Scholar 

  42. Minsky, M.L.: Matter, mind, and models. In: Minsky, M. (ed.) Semantic Information Processing, pp. 425–432. MIT Press, Cambridge (1968)

    Google Scholar 

  43. Modayil, J., Beeson, P., Kuipers, B.: Using the topological skeleton for scalable, global, metrical map-building. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (2004)

    Google Scholar 

  44. Modayil, J., Kuipers, B.: Bootstrap learning for object discovery. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (2004)

    Google Scholar 

  45. Modayil, J., Kuipers, B.: Autonomous shape model learning for object localization and recognition. In: IEEE International Conference on Robotics and Automation, IEEE Computer Society Press, Los Alamitos (2006)

    Google Scholar 

  46. Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: IEEE International Conference on Robotics and Automation, pp. 116–121. IEEE Computer Society Press, Los Alamitos (1985)

    Google Scholar 

  47. Piaget, J., Inhelder, B.: The Child’s Conception of Space. Norton, New York (1967). First published in French (1948)

    Google Scholar 

  48. Pierce, D., Kuipers, B.: Learning to explore and build maps. In: AAAI 1994. Proc. 12th National Conf. on Artificial Intelligence, AAAI/MIT Press (1994)

    Google Scholar 

  49. Pierce, D.M.: Learning turn and travel actions with an uninterpreted sensorimotor apparatus. In: IEEE International Conference on Robotics and Automation, Sacramento, CA, IEEE Computer Society Press, Los Alamitos (1991)

    Google Scholar 

  50. Pierce, D.M., Kuipers, B.J.: Learning hill-climbing functions as a strategy for generating behaviors in a mobile robot. In: Meyer, J.-A., Wilson, S.W. (eds.) Proceedings of the International Conference on Simulation of Adaptive Behavior: From Animals to Animats, MIT Press/Bradford Books, Cambridge, MA (1991)

    Google Scholar 

  51. Pierce, D.M., Kuipers, B.J.: Map learning with uninterpreted sensors and effectors. Artificial Intelligence 92, 169–227 (1997)

    Article  MATH  Google Scholar 

  52. Pierce, D.M.: Learning a set of primitive actions with an uninterpreted sensorimotor apparatus. In: Birnbaum, L., Collins, G. (eds.) Machine Learning: Proceedings of the Eighth International Workshop, Morgan Kaufmann, San Mateo, CA (1991)

    Google Scholar 

  53. Pratt, V.: A linguistics oriented language. In: IJCAI 1973. Proc. 3rd Int. Joint Conf. on Artificial Intelligence (1973)

    Google Scholar 

  54. Provost, J., Kuipers, B.J., Miikkulainen, R.: Developing navigation behavior through self-organizing distinctive-state abstraction. Connection Science 18(2), 159–172 (2006)

    Article  Google Scholar 

  55. Remolina, E., Kuipers, B.: Towards a general theory of topological maps. Artificial Intelligence 152, 47–104 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  56. Rivest, R.L., Schapire, R.E.: A new approach to unsupervised learning in deterministic environments. In: Proceedings of the Fourth International Workshop on Machine Learning (1987)

    Google Scholar 

  57. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences. In: Proc. 21st ACM Symposium on Theory of Computing, pp. 411–420. ACM Press, New York (1989)

    Google Scholar 

  58. Rivest, R.L., Schapire, R.E.: Diversity-based inference of finite automata. Journal of the ACM 41(3), 555–589 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  59. Rivest, R.L., Sloan, R.: Learning complicated concepts reliably and usefully. In: AAAI 1988. Proc. 7th National Conf. on Artificial Intelligence, pp. 635–640. AAAI Press/The MIT Press (1988)

    Google Scholar 

  60. Savelli, F., Kuipers, B.: Loop-closing and planarity in topological map-building. In: IROS 2004. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (2004)

    Google Scholar 

  61. Siegel, A.W., White, S.H.: The development of spatial representations of large-scale environments. In: Reese, H.W. (ed.) Advances in Child Development and Behavior, vol. 10, pp. 9–55. Academic Press, New York (1975)

    Google Scholar 

  62. Sutton, R.S., Barto, A.G.: Reinforcement Learning. MIT Press, Cambridge MA (1998)

    Google Scholar 

  63. Thrun, S.: Robotic mapping: A survey. In: Lakemeyer, G., Nebel, B. (eds.) Exploring Artificial Intelligence in the New Millenium, Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

Download references

Authors

Editor information

Margaret E. Jefferies Wai-Kiang Yeap

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuipers, B. (2007). An Intellectual History of the Spatial Semantic Hierarchy. In: Jefferies, M.E., Yeap, WK. (eds) Robotics and Cognitive Approaches to Spatial Mapping. Springer Tracts in Advanced Robotics, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75388-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75388-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75386-5

  • Online ISBN: 978-3-540-75388-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics