cDNA-Derived Amino Acid Sequence from Rat Brain A2aR Possesses Conserved Motifs PMNYM of  TM 5 Domain, Which May Be Involved in Dimerization of A2aR

  • Pratibha Mehta Luthra
  • Sandeep Kumar Barodia
  • Amresh Prakash
  • Ramraghubir
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4774)


The human adenosine A2a receptor (A2aR) belongs to the family of G-protein coupled receptors (GPCRs), characterized by seven transmembrane (TM) helices. TMs are involved in various cellular processes including dimerization-mediated recognition of ligand. TM5 has been suggested to self associate and may be involved in the dimerization of A2aR. However the role of dimerization and the motifs involved in dimerization of TM 5 have not been revealed. To study the folding and assembly of A2aR, the cDNA of the adenosine A2aR from rat brain was isolated and sequenced (DQ098650). The computational analysis (gi|70727927|gb|AAZ07991.1|) showed that the protein of 42 amino acid residues aligned in TM 5 domain region of AA2AR_RAT (P30543). PROSITE search illustrated that the motif PMNYM was conserved in A2aR and the motif PMSYM was present in A2bR respectively. The minimal dimerization motif in the TM 5 domain of the rat A2a receptor sequence DQ098650 has found to be the motif PXXXM/Y.


Adenosine A2a receptor cDNA GPCRs RT-PCR TM 5 


  1. 1.
    Zhou, N.E., Kay, C.M., Hodges, R.S.: Synthetic model proteins. Positional effects of interchain hydrophobic interactions on stability of two-stranded alpha-helical coiled-coils. J. Biol. Chem. 267, 2664–2670 (1992)Google Scholar
  2. 2.
    Lazarova, T., Brewin, K.A., Stoeber, K., Robinson, C.R.: Characterization of peptides corresponding to the seven transmembrane domains of human adenosine A2a receptor. Biochemistry 43, 12945–12954 (2004)CrossRefGoogle Scholar
  3. 3.
    Lau, S.Y., Taneja, A.K., Hodges, R.S.: Synthesis of a model protein of defined secondary and quaternary structure. Effect of chain length on the stabilization and formation of two-stranded alpha-helical coiled-coils. J. Biol. Chem. 259, 13253–13261 (1984)Google Scholar
  4. 4.
    Chen, J.F., Xu, K., Petzer, J.P., Staal, R., Xu, Y.H., Beilstein, M., Sonsalla, P.K., Castagnoli, K., Castagnoli Jr., N., Schwarzschild, M.A.: Neuroprotection by caffeine and A(2A) adenosine receptor inactivation in a model of Parkinson’s disease. J. Neurosci. 21, RC143 (2001)Google Scholar
  5. 5.
    Ferre, S., Popoli, P., Gimenez-Llort, L., Rimondini, R., Muller, C.E., Stromberg, I., Ogren, S.O., Fuxe, K.: Adenosine/dopamine interaction: implications for the treatment of Parkinson’s disease. Parkinsonism Relat. Disord. 7, 235–241 (2001)CrossRefGoogle Scholar
  6. 6.
    Richardson, P.J., Gubitz, A.K., Freeman, T.C., Dixon, A.K.: Adenosine receptor antagonists and Parkinson’s disease: actions of the A2A receptor in the striatum. Adv. Neurol. 80, 111–119 (1999)Google Scholar
  7. 7.
    Schwarzschild, M.A., Chen, J.F., Ascherio, A.: Caffeinated clues and the promise of adenosine A(2A) antagonists in PD. Neurology 58, 1154–1160 (2002)Google Scholar
  8. 8.
    Ferre, S.: Adenosine– dopamine interactions in the ventral striatum. Implications for the treatment of schizophrenia. Psychopharmacology (Berl.) 133, 107–120 (1997)CrossRefGoogle Scholar
  9. 9.
    Ferre, S., Fredholm, B.B., Morelli, M., Popoli, P., Fuxe, K.: Adenosine– dopamine receptor– receptor interactions as an integrative mechanism in the basal ganglia. Trends Neurosci. 20, 482–487 (1997)CrossRefGoogle Scholar
  10. 10.
    Rimondini, R., Ferre, S., Ogren, S.O., Fuxe, K.: Adenosine A2A agonists: a potential new type of atypical antipsychotic. Neuropsychopharmacology 17, 82–91 (1997)CrossRefGoogle Scholar
  11. 11.
    Shichida, Y., Imai, H.: Visual pigment: G-protein-coupled receptor for light signals. Cell. Mol. Life Sci. 54, 1299–1315 (1998)CrossRefGoogle Scholar
  12. 12.
    Gether, U.: Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr. Rev. 21, 90–113 (2000)CrossRefGoogle Scholar
  13. 13.
    Gurrath, M.: Peptide-binding G protein-coupled receptors: New opportunities for drug design. Curr. Med. Chem. 8, 1605–1648 (2001)Google Scholar
  14. 14.
    Jones, K.A., Borowsky, B., Tamm, J.A., Craig, D.A., Durkin, M.M., Dai, M., Yao, W.J., Johnson, M., Gunwaldsen, C., Huang, L.Y., et al.: GABA (B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature 396, 674–679 (1998)CrossRefGoogle Scholar
  15. 15.
    Jordan, B.A., Devi, L.A.: G-protein-coupled receptor heterodimerization modulates receptor function. Nature 399, 697–700 (1999)CrossRefGoogle Scholar
  16. 16.
    Bai, M.: Dimerization of G-protein-coupled receptors: Roles in signal transduction. Cell Signal 16, 175–186 (2004)CrossRefGoogle Scholar
  17. 17.
    Fotiadis, D., Liang, Y., Filipek, S., Saperstein, D.A., Engel, A., Palczewski, K.: The G protein-coupled receptor rhodopsin in the native membrane. FEBS Lett. 564, 281–288 (2004)CrossRefGoogle Scholar
  18. 18.
    Rios, C.D., Jordan, B.A., Gomes, I., Devi, L.A.: G protein-coupled receptor dimerization: Modulation of receptor function. Pharmacol. Ther. 92, 71–87 (2001)CrossRefGoogle Scholar
  19. 19.
    George, S.R., O’Dowd, B.F., Lee, S.P.: G-protein-coupled receptor oligomerization and its potential for drug discovery. Nat. Rev. Drug Discov. 1, 808–820 (2002)CrossRefGoogle Scholar
  20. 20.
    Breitwieser, G.E.: G protein-coupled receptor oligomerization: Implications for G-protein activation and cell signaling. Circ. Res. 94, 17–27 (2004)CrossRefGoogle Scholar
  21. 21.
    Fredholm, B.B., IJzerman, A.P., Jacobson, K.A., Klotz, K.N., Linden, J.: International Union of Pharmacology. XXV. Nomenclature and Classification of Adenosine Receptors. Pharmacol. Rev. 53, 527–552 (2001)Google Scholar
  22. 22.
    Schlessinger, J.: Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell 110, 669–672 (2002)CrossRefGoogle Scholar
  23. 23.
    Palczewski, K., Kumasaka, T., Hori, T., Behnke, C.A., Motoshima, H., Fox, B.A., Le Trong, I., Teller, D.C., Okada, T., Stenkamp, T.E., Yamamoto, M., Miyano, M.: Crystal Structure of Rhodopsin: A G Protein-Coupled Receptor. Science 289, 739–745 (2000)CrossRefGoogle Scholar
  24. 24.
    Thevenin, D., Lazarova, T., Roberts, M.F., Robinson, C.R.: Oligomerization of the fifth transmembrane domain from the adenosine A2a receptor. Protein Science 14, 2177–2186 (2005)CrossRefGoogle Scholar
  25. 25.
    Hulo, N., Sigrist, C.J., Le Saux, V., Langendijk-Genevaux, P.S., Bordoli, L., Gattiker, A., De Castro, E., Bucher, P., Bairoch, A.: Recent improvements to the PROSITE database. Nucleic Acids Res. 32, D134–D137 (2004)CrossRefGoogle Scholar
  26. 26.
    Haobam, R., Sindhu, K.M., Chandra, G., Mohanakumar, K.P.: Swim-test as a function of motor impairment in MPTP model of Parkinson’s disease: a comparative study in two mouse strains. Behav. Brain Res. 163, 159–167 (2005)CrossRefGoogle Scholar
  27. 27.
    Chomczynski, P., Sacchi, N.: Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987)CrossRefGoogle Scholar
  28. 28.
    Sutton, D.H., Conn, G.L., Brown, T., Lane, A.N.: The dependence of DNase I activity on the conformation of oligodeoxynucleotides. Biochem. J. 321, 481–486 (1997)Google Scholar
  29. 29.
    Hooper-McGrevy, K.E., MacDonald, B., Whitcombe, L.: Quick, simple, and sensitive RNA quantitation. Analytical Biochemistry 318, 318–320 (2003)CrossRefGoogle Scholar
  30. 30.
    Wu, D.Y., Ugozzoli, L., Pal, B.K., Qian, J., Wallace, R.B.: The effect of temperature and oligonucleotide primer length on the specificity and efficiency of amplification by the polymerase chain reaction. DNA and Cell Biology 10, 233–238 (1991)CrossRefGoogle Scholar
  31. 31.
    Rozen, S., Skaletsky, H.J.: Bioinformatics Methods and Protocols: Methods in Molecular Biology, pp. 365–386. Humana Press, Totowa, NJ (2000)Google Scholar
  32. 32.
    Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)Google Scholar
  33. 33.
    Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: A new generation of protein database search programs. Nucl. Acids Res. 25, 3389–3402 (1997)CrossRefGoogle Scholar
  34. 34.
    Fotiadis, D., Liang, Y., Filipek, S., Saperstein, D.A., Engel, A., Palczewski, K.: Atomic-force microscopy: Rhodopsin dimers in native disc membranes. Nature 421, 127–128 (2003)CrossRefGoogle Scholar
  35. 35.
    Liang, Y., Fotiadis, D., Filipek, S., Saperstein, D.A., Engel, A., Palczewski, K.: Organization of the G Protein-coupled Receptors Rhodopsin and Opsin in Native Membranes. J. Biol. Chem. 278, 21655–21662 (2003)CrossRefGoogle Scholar
  36. 36.
    Fotiadis, D., Liang, Y., Filipek, S., Saperstein, D.A., Engel, A., Palczewski, K.: The G protein-coupled receptor rhodopsin in the native membrane. FEBS Lett. 564, 281–288 (2004)CrossRefGoogle Scholar
  37. 37.
    O’Dowd, B.F., Nguyen, T., Tirpak, A., Jarvie, K.R., Israel, Y., Seeman, P., Niznik, H.B.: Cloning of two additional catecholamine receptors from rat brain. FEBS Lett. 262, 8–12 (1990)CrossRefGoogle Scholar
  38. 38.
    Yu, L., Frith, M.C., Suzuki, Y., Peterfreund, R.A., Gearan, T., Sugano, S., Schwarzschild, M.A., Weng, Z., Fink, J.S., Chen, J.F.: Characterization of genomic organization of the adenosine A2A receptor gene by molecular and bioinformatics analyses. Brain Res. 1000, 156–173 (2004)CrossRefGoogle Scholar
  39. 39.
    Upton, G., Fingleton, B.: Spatial data analysis by example. Wiley, Chichester (1985)zbMATHGoogle Scholar
  40. 40.
    Dean, M.K., Higgs, C., Smith, R.E., Bywater, R.P., Snell, C.R., Scott, P.D., Upton, G.J., Howe, T.J., Reynolds, C.A.: Dimerization of G-protein-coupled receptors. J. Med. Chem. 44, 4595–4614 (2001)CrossRefGoogle Scholar
  41. 41.
    Chenna, R., Sugawara1, H., Koike, T., Lopez, R., Gibson, T.J., Higgins, D.G., Thompson, J.D.: Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Research. 31, 3497–3500 (2003)CrossRefGoogle Scholar
  42. 42.
    Bateman, A., Coin, L., Durbin, R., Finn, R.D., Hollich, V., Griffiths-Jones, S., Khanna, A., Marshall, M., Moxon, S., Sonnhammer, E.L.L., Studholme, D.J., Yeats, C., Eddy, S.R.: The Pfam protein families database. Nucleic Acids Research 32, D138–D141 (2004)CrossRefGoogle Scholar
  43. 43.
    Castro, E., Christian, J.A., Sigrist, G.A., Bulliard, V., Langendijk-Genevaux, P.S., Gasteiger, E., Bairoch, A., Hulo, N.: ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Research 34, W362–W365 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Pratibha Mehta Luthra
    • 1
  • Sandeep Kumar Barodia
    • 1
  • Amresh Prakash
    • 1
  • Ramraghubir
    • 2
  1. 1.Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, P.O. Box No. 2148, Delhi-110007India
  2. 2.Department of Pharmacology, Central Drug Research Institute, Lucknow 226001India

Personalised recommendations